An Announcement From:

Dr Rami M Sorial FRACS FAOrthA
President, Asia Pacific Arthroplasty Society & Associate Editor-in-Chief, Pacific Rim, Reconstructive Review

&

Timothy McTighe, Dr. H.S. (hc)
Executive Director, JISRF, & Editor-in-Chief, Reconstructive Review

We are pleased to announce that JISRF’s journal Reconstructive Review will become the official journal for APAS. We welcome its Members to open free access to all publications and encourage its Members to submit manuscripts for publication in one of four quarterly issues.

We also welcome interested Members to become reviewers for the Reconstructive Review.

Reconstructive Review Editor-in-Chiefs Role has been Expanded Providing Global Outreach

Dr. Keith Berand, USA
Dr. Evert Smith, UK
Dr. Rami Sorial, Pacific Rim

Please visit our websites for more information:

www.jisrf.org • www.reconstructivereview.org
Strategic Alliance

Joint Implant Surgery & Research Foundation

is Pleased to Continue a Strategic Alliance with the

DONALDSON ARTHRITIS
RESEARCH FOUNDATION

Donaldson Arthritis Research Foundation

DARF, founded in 2005 by Dr. Thomas K. Donaldson, has a focus on outcome studies and basic science with major emphasis on implant retrievals. His ongoing collaboration with Ian Clarke, PhD provides a synergy between the laboratory and clinical surgical science. Both men are Board Members of JISRF and have a significant working relationship with its Executive Director Timothy McTighe Dr. HS (hc).

JISRF, founded in 1971, has had significant experience with continuing medical education, product development, and clinical surgical evaluation of total joint implant devices.

The long term relationships JISRF has with total joint surgeons world wide and the experience of its Co-Directors and research evaluation equipment of the DARF Retrieval Center make for a strong long-term relationship.

Together both groups will provide unprecedented analysis of your Retrievals.

www.jisrf.org • www.darfcenter.org

Metal on metal retrieval

Ian Clarke, PhD & Thomas K. Donaldson, MD
Our new website provides a more user-friendly platform for viewing and searching all past and current articles. It’s based on open source software called Open Journal Systems (OJS) created by the Public Knowledge Project.

OJS was designed for the management and online presentation of open access, peer-reviewed academic journals. The software has a ‘plugin’ architecture allowing easy integration of key features including tools to facilitate indexing in online directories such as Google Scholar and PubMed Central.

Reconstructive Review – Promoted on Five Websites

Links to Reconstructive Review and its articles are available on these websites:

• APASonline.org Asian Pacific Arthroplasty Society
• COA.org California Orthopaedic Association
• ICJR.net International Congress for Joint Reconstruction
• JISRF.org Joint Implant Surgery & Research Foundation
• ReconstructiveReview.org

Now Find the CrossMark (by CrossRef) Button

It gives readers the information they need to verify that they are using the most recent and reliable versions of a document.

Abstracts Indexed On:

And Searchable In:

Google and Google Scholar
JISRF Board Members

Charles O. Bechtol, MD (Founder 1971-1998)
Louise Bechtol, R.N. (Founding member)
Keith Berend, MD
Hugh U. Cameron, MB, ChB
Ian Clarke, PhD
Jack Diamond, Esq.
Thomas Donaldson, MD
Kristaps J. Keggi, MD
Dr. John M. Harrison AM
Edward James McPherson, MD
Richard E. Jones, MD
Timothy McTighe, Dr. HS (hc)
H. Del Schutte, MD

Lifetime Achievement Honorees

1991 Charles O. Bechtol, MD
1992 Charles O. Townley, MD
1993 Irwin S. Leinbach, MD
1994 Bruce D. Shepherd, MB
1995 James E. Bateman, MD
1996 Roderick H. Turner, MD
1997 William R. Murray, MD
2003 Thomas H. Mallory, MD
2007 Ian Clarke, PhD
2010 Kristaps J. Keggie, MD
2014 John H. Harrison, PM, MD

Clinical/Surgical Research Advisors:

Warwick Bruce, MD
Terry Clyburn, MD
John Keggi, MD
Louis Keppler, MD
S. David Stulberg, MD
Thomas Tkach, MD
Allan Turnbull, MD
Bradley K. Vaughn, MD

Regional Offices

California Division
Director
Edward J. McPherson, MD, FACS
1414 S. Grand Ave.
Suite #123
Los Angeles, CA 90015

Co-Directors of Research
Declan Brazil, PhD, Sydney, Australia
Professor Ian Clarke, PhD, Loma Linda, California

Members of the TSI™ Study Group posted on www.jisrf.org.

Reviewers

The goal of JISRF and Reconstructive Review is to provide peer-reviewed, open-access orthopaedic articles focusing on total joint arthroplasty. To achieve this goal we rely on those individuals who are willing to take on the responsibility, and privilege, to review articles written by their peers. The following is Reconstructive Review’s current list of reviewers.

<table>
<thead>
<tr>
<th>Charles Alexander</th>
<th>Mark Froimson</th>
<th>Michael Manley</th>
<th>W. Norman Scott</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniel Allison</td>
<td>Jerry Gorski</td>
<td>David Mauerhan</td>
<td>Raj Sinha</td>
</tr>
<tr>
<td>Hani Alnakhli</td>
<td>Kenneth Greene</td>
<td>Michael Mayor</td>
<td>Evert Smith</td>
</tr>
<tr>
<td>Christopher Anderson</td>
<td>William Griffin</td>
<td>Joseph McCarthy</td>
<td>Rami Sorial</td>
</tr>
<tr>
<td>Asaad Asaad</td>
<td>Ronald Hillock</td>
<td>Lorcan McGonagle</td>
<td>Panayot Tanchev</td>
</tr>
<tr>
<td>Keith Berend</td>
<td>Kirby Hitt</td>
<td>Harry McKellop</td>
<td>Panayot Tanchev, Jr.</td>
</tr>
<tr>
<td>Declan Brazil</td>
<td>John Ireland</td>
<td>Edward McPherson</td>
<td>Richard Tarr</td>
</tr>
<tr>
<td>Warwick Bruce</td>
<td>Robert Jamieson</td>
<td>Timothy McTighe</td>
<td>Jeffery Taylor</td>
</tr>
<tr>
<td>Hugh Cameron</td>
<td>Riyaz Jinnah</td>
<td>Jon Minter</td>
<td>Robert Thornberry</td>
</tr>
<tr>
<td>David Campbell</td>
<td>Richard Jones</td>
<td>Russell Nevins</td>
<td>Patrick Treacy</td>
</tr>
<tr>
<td>Edward Cheal</td>
<td>Maurice Jove</td>
<td>Steven Nishiyama</td>
<td>Allen Turnbull</td>
</tr>
<tr>
<td>Michael Christie</td>
<td>Michael Kaplan</td>
<td>Philip Nobel</td>
<td>Anthony Unger</td>
</tr>
<tr>
<td>Ian Clarke</td>
<td>Stephen Kayiaros</td>
<td>Mary O’Connor</td>
<td>Adrian van der Rijt</td>
</tr>
<tr>
<td>Terry Clyburn</td>
<td>John Keggi</td>
<td>Julio Palacio</td>
<td>Bradley Walter</td>
</tr>
<tr>
<td>Simon Coffey</td>
<td>Kristaps Keggi</td>
<td>Christopher Peters</td>
<td>William Walter</td>
</tr>
<tr>
<td>Richard Cook</td>
<td>Robert Kennon</td>
<td>Derek Pupello</td>
<td>Bill Walter</td>
</tr>
<tr>
<td>Paul Della Torre</td>
<td>Louis Keppler</td>
<td>Lee Rubin</td>
<td>Andrew Wassef</td>
</tr>
<tr>
<td>Paul DiCesare</td>
<td>Stefan Kreuzer</td>
<td>Mark Sacaris</td>
<td>Richard Welch</td>
</tr>
<tr>
<td>Thomas Donaldson</td>
<td>Lafayette Lage</td>
<td>Lewis Samuels</td>
<td>Duncan Whitwell</td>
</tr>
<tr>
<td>Scott Dunitz</td>
<td>Jeremy Latham</td>
<td>Kent Samelson</td>
<td>Sumesh Zingde</td>
</tr>
<tr>
<td>C. Anderson Engh</td>
<td>Audley Mackel</td>
<td>Frank Schmidt</td>
<td></td>
</tr>
</tbody>
</table>
Signature Orthopaedics is a design, development and manufacturing company for orthopaedic implants and instruments. The head office located in Sydney Australia, with offices in Europe and North America. We have years of experience in taking concepts right through design and development and into certification, whether it be the FDA, BSI or the TGA.

We are routinely supplying parts for the Hip, Knee, foot and ankle, spine, shoulder, both to the locally and international markets. With the added capability of making custom implants for specific cases, using the latest software to guarantee the perfect fit.

We are happy to design and develop both instruments and prosthesis for your needs, or we can supply one of our many FDA approved solutions as an OEM vendor. Our product, your box!

Call or email to discuss which solution is right for you!
EXTRA DEEP & EXTRA LARGE HIP RETRACTORS

For hip surgery with large patients and when extra depth and leverage are required

2" deeper than standard versions

Extra Deep Modified Femoral Neck Elevator
PRODUCT NO: 3418

Extra Deep Modified Hohmann Retractor
PRODUCT NO: 4535-01

Extra Deep Long Narrow Hohmann Retractor
PRODUCT NO: 4540-01

Extra Deep Modified Blunt Hohmann Retractor
PRODUCT NO: 4550-01

Extra Deep Hohmann Retractor
PRODUCT NO: 4558-01

Extra Deep Single-Prong Soft Tissue Retractor
PRODUCT NO: 6450-01

Extra Deep Single-Prong Acetabular Retractor
PRODUCT NO: 6570-01

Extra Deep Modified Wide Hohmann Retractor
PRODUCT NO: 6595-01

Extra Deep Hip Hohmann Retractor
PRODUCT NO: 7115-03

Extra Deep Cobra Retractor
PRODUCT NO: 7630-03

Extra Deep Modified Femoral Neck Elevator
PRODUCT NO: 7640

Designed by Wayne M. Goldstein, MD

Extra Leverage Proximal Femoral Elevator
PRODUCT NO: 7630-01 [Standard]
7630-02 [Wide]

Designed by Wayne M. Goldstein, MD

Deep Cobra Retractors
PRODUCT NO: 6135 [Deep]
6135-L [Lighted Deep]

Designed by Wayne M. Goldstein, MD

Extra Large Hibbs Retractor
PRODUCT NO: 6230

Infero-posterior Acetabular Capsule Retractors
PRODUCT NO: 7620-01 [Right]
7620-02 [Left]

Thornberry Hip Positioner
Sturdy Support for Large Patients

Designed to be adjustable yet sturdy, and is especially helpful when stabilizing a large patient during total hip and revision surgery

PRODUCT NO: 4180-00 [Complete Set]

Back Support Unit
Foot Support Unit

© 2016 Innomed, Inc.

1.800.548.2362

Innomed-Europe Tel. +41 41 740 67 74
Fax +41 41 740 67 71

103 Estus Drive, Savannah, GA 31404
www.innomed.net info@innomed.net
912.236.0000 Phone 912.236.7766 Fax

Scan to Launch Our Website

Innomed Europe
The Reconstructive Review (ISSN 2331-2262 print, ISSN 2331-2270 online) will be published four times a year by the Joint Implant Surgery & Research Foundation (JISRF), 46 Chagrin Plaza #117, Chagrin Falls, Ohio 44023.

Editorial Correspondence

Please direct any requests for inclusion, editorial comments or questions to Timothy McTighe, Dr. HS (hc), Executive Director, JISRF, 46 Chagrin Plaza #117, Chagrin Falls, Ohio 44023, tmct@jisrf.org.

Correspondence

Direct any questions regarding the submission process, or requests for reprints to David Faroo, Director of Communications, JISRF, 46 Chagrin Plaza #117, Chagrin Falls, Ohio 44023, dfaroo@jisrf.org.

There is no subscription charge for receipt of this publication. This is done as a service keeping with the overall mission of JISRF.

For information on how to submit articles to the Reconstructive Review please review the following or visit http://www.reconstructivereview.org.

Submit Articles to the Reconstructive Review

Please visit ReconstructiveReview.org to submit an article for review and publication in the Reconstructive Review. All material to be considered for publication should be submitted via this online submission system.

Before submitting an article to Reconstructive Review, please follow the instructions below.

ARTICLE TYPES

Reconstructive Review accepts the following categories of articles:

• Original Articles
• Basic Science
• Case Reports
• Clinical/Surgical
• Commentary
• Controversial Issues (i.e. modularity, tapers, MoM)
• Healthcare Policy/Economics
• Reviews
• Letters to the Editor
• Surveys

The emphasis for these subjects is to address real life orthopaedics in a timely fashion and to encourage the participation from a broad range of professionals in the orthopaedic health care field.

We will strive to be responsible and reactive to the needs expressed to our editors and all members of JISRF. We anticipate our format will evolve as we move forward and gain more experience with this activity. Your opinion is a critical step to our motivation and overall success, please do not hesitate to communicate with us.

INSTRUCTIONS FOR SUBMITTING ARTICLES

Please read the following information carefully to ensure that the review and publication of your paper is as efficient and quick as possible. The editorial team reserves the right to return manuscripts that have not been submitted in accordance with these instructions.

File Formats

• All articles must be submitted as Word files (.doc/.docx) with lines of text numbered. PDF’s are not acceptable for submission.
• Figures, images, and photographs should be high quality .JPG images (at least 150 dpi, 300 dpi if possible). All illustrations and line art should be at least 1200 dpi.

Article Preparation

Articles submitted will need to be divided into separate files including cover page and manuscript. Figures, images, and photographs should be submitted separately.
• **Cover Page** - includes article title, lists all authors that have contributed to the submission and provides all authors information including their title, full name, their association with the paper, their full postal address and email. Please list all authors in the order that you want them to appear.

• **Manuscript** - EXCLUDES ALL AUTHOR INFORMATION. The manuscript is used in creating the file for peer review – a double blind process. Your submission should follow this structure:
 - Title
 - Abstract (ALL ARTICLES MUST INCLUDE AN ABSTRACT)
 - Introduction
 - Materials and Methods
 - Results
 - Discussion
 - References (for styles please refer to the website http://www.nlm.nih.gov/bsd/uniform_requirements.html)

• **Figures, Images and Photographs** - Please do not embed figures, images, and photographs in the main manuscript. They should be uploaded as individual files.

Once you have prepared your manuscript according to the information provided above, please go to our website ReconstructiveReview.org and click on the Register link. Once you have registered you will click on the Submit New Manuscript link. Detailed instructions on how to submit your manuscript can be found at ReconstructiveReview.org.

INFORMED CONSENT

Any manuscript dealing with human subjects must include a statement that proper disclosure was given and patient consent was received.

COPYRIGHT AGREEMENT

Authors retain copyright and grant the journal right of first publication with the work. Reconstructive Review follows the Creative Commons Attribution-NonCommercial CC BY-NC. This license allows anyone to download works, build upon the material, and share them with others for non-commercial purposes as long as they credit the senior author, Reconstructive Review, and the Joint Implant Surgery & Research Foundation (JISRF). An example credit would be: “Courtesy of (senior author’s name), Reconstructive Review, JISRF, Chagrin Falls, Ohio”. While works can be downloaded and shared they cannot be used commercially.

DISCLOSURE STATEMENT

As part of the online submission process, corresponding authors are required to confirm whether they or their co-authors have any conflicts of interest to declare, and to provide details of these. If the Corresponding author is unable to confirm this information on behalf of all co-authors, the authors in question will then be required to submit a completed Disclosure Statement form to the Editorial Office (editors@reconstructivereview.org). It is the Corresponding author’s responsibility to ensure that all authors adhere to this policy.

Reconstructive Review Production Specifications

The Reconstructive Review is currently constructed using InDesign running on a Mac. The document is published on the web, available for download as a PDF, and printed in limited quantities.

- **Trim Size**: 8.5” x 11”
- **Live Area**: 7.25” x 9.25”
- **No Bleeds**

Ad Specification

- Full color or black and white - available sizes:
 - Full Page, 7.25” x 9.25”
 - Half Page Horizontal, 7.25” x 4.25”
 - Half Page Vertical, 3.25” x 9.25”

Any questions regarding these specifications should be directed to media@jisrf.org.

General Statement

The ideas, opinions and statements expressed in the Reconstructive Review do not necessarily reflect those of the publisher and or editor of this publication. Publication of advertisement does not indicate an endorsement of product or service by the publisher or editor of JISRF. The publisher and editor assume no responsibility for any injury or damage resulting out of any publication of material within the Reconstructive Review. The reader is advised to review and regard with balance any information published within this publication with regard to any medical claim, surgical technique, product features or indications and contraindications. It is the responsibility of the professional treating medical physician to review any and all information before undertaking any change of treatment for their patients.
CONTENTS

CLINICAL / SURGICAL

13 The iDuo Bi-compartmental Knee Replacement: Our Early Experience
 Jemmett P, Roy S

ORIGINAL ARTICLE

19 The History, Technical Specifications and Efficacy of Plasma Spray Coatings Applied to Joint Replacement Prostheses
 McCabe A, Pickford M, Shawcross J

CASE STUDY

27 Patient-specific Component Alignment in Total Hip Arthroplasty

CASE REPORT

35 Prosthetic Fracture of a Cemented Exeter Femoral Stem
 Facek M, Khatib Y, Swarts E

41 Prosthetic Hip Loosening Due to Brucellar Infection: Case Report and Literature Review
 Tebourbi A, Hadhri K, Salah M, Bouzidi R, Kooli M

52 Disclosure Statements
The iDuo Bi-compartmental Knee Replacement: Our Early Experience

Jemmett P¹, Roy S¹

Abstract

We present the first UK single surgeon case series for the iDuo knee. This is a CT based custom fit monolithic bi-compartmental design that resurfaces both trochlea and condyle. Perceived benefits include maintenance of normal kinematics and preservation of bone stock on the unaffected side. The femoral component is tailored to the patient with no compromise of either the trochlea or femoral geometry.

Method: Patients were selected based on functional ability and physiological age who had an intact symptom free lateral compartment. Knee Society scoring (KSS) was performed pre-operatively and at regular intervals. Patients were asked whether they would undergo the same operation at the one-year mark.

Results: Seven patients have undergone this procedure from 2013 until present. Average age is 60 (Range 55-82). Average pre-op KSS was 108. All patients consistently scored higher at each interval follow up with excellent results at one year (Av KSS 194). This benefit was seen past two years in all but one in those reaching this point.

Conclusion: Our early results suggest that the iDuo knee is a good option for those with isolated bi-compartmental disease and outcome scores are comparable with those reported for the BKA. This bi-compartmental design may bridge the gap between the uni-compartmental and total knee replacement. The choice between monolithic or modular designs remains in debate. We will continue to use this prosthesis for a carefully selected group of patients.

Keywords: knee; arthroplasty; bi-compartmental; monolithic

Level of Evidence: AAOS Therapeutic Level IV

Introduction

Even today, it is not uncommon for patients with isolated compartmental wear to be treated with total knee replacement. Whilst an acceptable result is obtained in many cases, it seems unnecessary to sacrifice healthy bone stock and the anterior cruciate ligament when all three compartments are not affected. There has been a resurgence in the use of uni-compartmental replacement granting a select...
group of patients a better chance of returning to normal functional activity and low impact sports [1,2]. Unfortunately, medial compartmental structural cartilage damage will often progress to the patella-femoral joint [3] and given the strict criteria in most centers, UKA for these younger patients with some additional patella-femoral involvement may not be appropriate [4].

The use of bi-compartmental knee arthroplasty (BKA) to address this problem is in its infancy. Data for these is sparse and reports are mixed. Parratte et al [5] retrospectively analyzed a patient group who had undergone patella-femoral and unit-condylar arthroplasty in combination. Functional scores at a mean of 12 years were encouraging but implant survival was 54% at 17 years. Recent short term results using combinations of commonly used implants are promising [6,7,8] and yet studies exist to suggest no benefit of bi-compartmental arthroplasty over total knee replacement when considering functional outcome [9].

The Journey-Deuce bi-compartmental prosthesis (Smith & Nephew, Memphis, Tenn) was introduced in 2005. This employed a single femoral component (monolithic), which resurfaced the medial femoral condyle and trochlea groove. Unfortunately tibial plate loosening and inconsistent pain relief led to its withdrawal [10,11].

More recently, ConforMIS (Bedford, MA) has developed the iDuo monolithic partial knee replacement for bi-compartmental disease affecting the medial or lateral tibio-femoral and patella-femoral joints. This system seen radiologically and graphically in Figure 1, employs single use jig instrumentation customized for each patient following pre-operative CT scanning. Again the femoral component resurfaces both the condyle and trochlea groove. The perceived benefits, as with the Journey-Deuce knee include maintenance of normal kinematics, preservation of bone stock on the unaffected side and preservation of both cruciates. Unlike the Deuce knee however, the femoral component is tailored to each patient with no compromise of either the trochlea or femoral geometry. In addition, operating room efficiency may be improved with pre-sterilized disposable instruments and a single reusable instrument tray.

This study is the first short term outcome study for the iDuo knee and aims to investigate whether we now have a viable monolithic option to bridge the gap between unicompartmental and total knee replacement (TKR).

Method

Patients were listed for this procedure provided that they had established medial and patella-femoral compartment osteoarthritis with an intact lateral compartment. Examination and plain films in tandem were employed to make this decision. Whilst age was not used as an absolute exclusion factor we felt it important that patients should lead an active lifestyle without significant co-morbidity. Patients then underwent mapping CT scanning within 3 months of the procedure. Patient specific jigs and prostheses were manufactured accordingly. A final decision to perform bi-compartmental resurfacing rather than total replacement was made at the time of surgery with full evaluation of all compartments via a midvastus approach. All patients that were scheduled for bi-compartmental surgery were implanted with the iDuo; there were no patients who were converted at time of surgery.

All patients underwent Knee Society Scoring (KSS) on the day of surgery and at 6 weeks, 3 months, 6 months, 1 year and annually from then on where possible. This system scores the knee itself and the overall function of the patient. A Knee or function score of 80-100 can be classified as excellent, 70-79 as good, 60-69 as fair and below 60 as poor. At one year, patients were asked whether they would be prepared to undergo the same procedure again.

Results

Seven patients underwent bi-compartmental knee replacement using the iDuo system between 2013 and present time. The senior author performed all procedures. Average patient age was 60 (range 49-82) three of whom were female and four male. All but one patient have passed the one year follow up period, four have passed the two year stage and one has thus far been seen as an out-patient for over three years. Only
one patient is retired. The remaining patients continue to work, three working in a clinical setting for the NHS. They all lead active lives, as reflected in part by body mass index (BMI) and American Society of Anesthesiologists scoring (ASA) shown in Table 1a & b.

Scoring was not completed in two patients at 6 weeks, two patients at 3 months and in one patient at 6 months. Other than these omissions, the data set is complete (Table 1a & b). The average pre-operative KSS was 108 (knee score 57/function score 51). These scores increased to reach excellent results above 80 in all cases (Table 1a/b & Figure 2). Where follow up was chronologically possible, we see that this outcome is maintained with the exception of one.

Patient 1 returned to theatre at 6 weeks for manipulation as her range of movement progression was deemed poor. She progressed well following this intervention and her scoring was excellent at 1 year. More recently she has developed increasing pain and stiffness as depicted in the Table 1 figures. Despite normal radiographs she is now under investigation for infection but as yet nothing abnormal has been found and she continues to work full time in the outpatients department.

These particular scores have lead to the 2 year dip in Figure 2. Patient 3 has noticed a decline in function during the last year but attributes this to an arthritic contralateral knee. Other than patient 1, all remaining patients would be willing to undergo the same operation again.

Interestingly, despite excellent outcomes even at 3 months, several patients subjectively felt that it took at least a year to start feeling satisfied with their recovery. Patient 4 previously underwent a unicondylar knee replacement in his contra-lateral knee. He feels that recovery with this particular knee was much quicker although long-term outcome has been subjectively similar to that of his iDuo knee. Morning stiffness/aching has been noted in most patients but only lasts a few steps. Knee scores have thus persistently failed to reach 100.

Discussion

Amongst those undergoing TKR, it has been shown that 28% have a preserved lateral tibio-femoral joint [12]. The idea to replace only two compartments is attractive but by no means new [13 5]. Despite this, progression seems slow
and evidence to support this concept is sparse. What is certain is that the arthroplasty cohort is becoming younger and has both higher functional demands and an increased chance of revision at a later date. Bone preservation and near normal joint kinematics should therefore be a priority. The literature suggests relatively normal kinematics can be achieved by preserving both cruciates. PCL retention alone may lead to inconsistent femoral rollback [14] and paradoxical anterior translation in TKR during deep flexion [15]. In vivo bi-unicondylar knee studies have shown that their kinematics and stability are comparable with the native knee [16,17]. Wang et al [18] compared gait kinematics in BKA versus control limbs at 1 year. They showed little difference in walking performance, coronal plane mechanics and knee extensor moment. More recently this same group compared the iDuo knee with TKR patients and healthy controls. This study demonstrated that iDuo limbs possessed comparable strength, mechanics and speed to healthy controls during daily activities and that TKR limbs showed significant deficit to both healthy control subjects and iDuo limbs [19].

The Journey Deuce knee has been the only other monolithic design marketed but has now been withdrawn. Palumbo et al. converted 14% to total knee replacements at an average of 19 months for persistent pain. They found tibial base plate loosening as the cause. This could have been related to excess micro motion at the bone-cement interface [11]. Only 48% were found to have an excellent to good post-operative functional KSS. Morrison et al. revised 3 of 21 Journey-Deuce knees for persistent postoperative pain at one year and found an overall complication rate of 28.6% with BKA compared to 6.1% in their TKR cohort [20]. Tria et al. reported anterior knee pain in 26% of 40 knees and 12% needing revision after a mean follow up of 2 years [21]. All three papers reported tibial tray fractures.

Conversely, early data for the iDuo knee is more favorable. Bryant et al. reported that 91% of 34 knees at a mean follow up of 30 months had good to excellent results. Additionally, if given the choice to undergo the same operation again, 97% replied yes. Our results seem to echo this sentiment but with the benefit of prospective knee outcome scoring. Thus far we have not recorded any of the complications associated with the Deuce knee and even if when including the data of patient 1, all patients at 2 years have scores above 80. The published results of modular BKA is a little more extensive. Both Paratte et al. [5] and Heyse et al. [13] have reported long-term results with an average follow up of approximately 12 years. These papers suggest good to excellent functional and knee scores. Comparison with the iDuo knee is difficult as our cohort is small and follow up is short. This, we believe, reflects the age of the design and specific patient selection. There are currently no papers comparing modular and monolithic designs.

The question therefore, is why should the iDuo knee be any different? There are several design features, which may be key to its early success. The tibial tray is 2mm thick and thus thicker than that of the Deuce knee leading to a lower risk of fracture. There is also an additional tibial component posterior keel for increased stability. The patient specific design may have several benefits when compared with “off the shelf” incremental size designs. Koeck et al. showed that tibial cortical fit/coverage is optimized and both component alignment and balance can be reliably achieved [22]. The Koeck paper was based on the ConforMIS iUni knee but the instrumentation, tibial tray features and design process for the implant is the same as that for the iDuo design. A patient specific femoral component not only preserves bone stock but also allows optimum geometry and alignment of both compartments. It is often difficult to gain this result with more standard designs, often achieving successful size and balance in one compartment but to the detriment of the other. Many times, we have to compromise in partial knee surgery, between fit of the implant and the alignment of the femoral and tibial interface. This can lead to edge loading on the tibial implant. The compromise is obviated with the iDuo system. By design, the fit will be specific for each patient’s tibial and femoral condylar geometry and the contact area between the two will be maximized. These design features may render the iDuo knee at lower risk for loosening and pain in the future.

We mentioned earlier in this paper that it is a great shame to sacrifice healthy bone stock and the ACL when using TKR for bi-compartmental disease. Even though old age is not strict exclusion criteria for the iDuo, our patients are generally high functioning and below the age of 60. It is therefore important to discuss outcomes in those who have undergone TKR at a younger age. After all, TKR would have been a perfectly acceptable option for our cohort.

Several recent papers cover TKR performed in younger patients. Meftah et al evaluated durability and functional outcome in patients who had undergone TKR and were 60 years and younger. At mean follow up of 12.3 years, overall survivorship was 98% and KSS was 80 and above in 95% of their fixed bearing knees [23]. Long et al have published results of 45 knees with an average of 25.1 years follow up and average age of 51. The average knee score was 87.4 and functional score, 62.1. In a similar but larger cohort (108 knees), survivorship without revision for any cause was 70.1% at 30 years [24]. Kim et al have showed that the KSS in TKR were excellent at 16.8 years in a co-
hort with an average age of 45 years. The Kaplan-Meier survivorship for revision was 95% [25]. These results would suggest that functional outcome and survivorship is good in younger patients who undergo TKR and function rivals that of our cohort. Survivorship cannot be compared. However, one advantage of the iDuo system compared with standard TKR may be ease of revision or better function thereafter as Bone stock preservation is a key feature of the iDuo knee.

There is no doubt that the limitation of this paper is that of patient number. However, the iDuo knee is relatively new to the market and may only be appropriate for a small population. Long-term data and comparison studies are required to further evaluate this knee prosthesis with particular attention to direct comparison with TKR.

Conclusion

Our early results suggest that the iDuo knee is a good option for those with isolated bi-compartmental disease and outcome scores are comparable with those reported for the BKA. This bicompartimental design may bridge the gap between the uni-compartmental and total knee replacement. The choice between monolithic or modular designs remains in debate. We will continue to use this prosthesis for a carefully selected group of patients.

Disclosure

The authors declare that there is no conflict of interest regarding the publication of this paper. For full disclosures refer to last page of this journal.

References

Tissue Sparing Total Hip Arthroplasty Study Group

The Joint Implant Surgery and Research Foundation has a long history in the study of THA. It began back in 1971 when Professor Charles O. Bechtol, M.D. established JISRF as a nonprofit scientific and educational foundation.

JISRF continues this study with the formation of a new study group of international surgeons and scientists. Findings will be posted on the foundation’s web site at www.jisrf.org.

JISRF Mission Statement

The specific and primary endeavors are to operate for scientific purposes by conducting medical research of potential improvements in medical surgical methods and materials for preserving and restoring the functions of the human body joints and associated structures which are threatened or impaired by defects, lesions or diseases.

This Journal as all activities conducted by JISRF are available to all interested surgeons, scientists and educators. Our focus is on new cutting edge technologies, science – all with the intent to raise the level of discussion and discovery. Please become a part of this endeavor, we look forward to your interest and participation.
The History, Technical Specifications and Efficacy of Plasma Spray Coatings Applied to Joint Replacement Prostheses

McCabe A 1, Pickford M 2, Shawcross J 1

Abstract

Thermal plasma sprayed coatings are designed to improve both the biocompatibility and durability of implantable medical devices, and include pure titanium, cobalt/chrome alloy and hydroxyapatite. Coated joint replacements have now been in continuous clinical use for thirty years and are applied to products manufactured or used in Europe, North America, South America, Africa, Asia and Australasia. Prostheses incorporating such coatings have been successfully implanted into several million of patients worldwide and to date there have been very few reports of any failure of an implant which could be attributed to problems with, or failure of, the coating. This paper summarises the early history of cementless prostheses and subsequent development, specification, validation, regulatory requirements and clinical performance of thermal plasma spray coatings provided by Accentus Medical.

Keywords: plasma; spray; coatings; joint; replacement; prostheses
Level of Evidence: AAOS Therapeutic Level V

Introduction and Background

During the development of total hip replacement, during the 1950s and 1960s, the early prostheses such as the Charnley Hip were incorporated into the bone using an acrylic cement. This was made from polymethyl methacrylate, which had originally been developed for use in the dental industry, a couple of decades before. Such a method of fixation has proved to be very successful and the technique is still in use today, especially for older, low demand patients. However, long-term follow up of patient cohorts, showed that cement was susceptible to fatigue failure in high demand patients and that the resultant cement debris led to osteolysis and death of the host bone around the implant. This phenomenon became known as cement disease.
[1], a problem that was widely researched and published in the 1980s.

There was clearly a need to eliminate cement from the artificial joints of young, active or obese patients if successful outcomes were to be achieved in these patient groups.

As a direct result of this, the 1980s saw the development of a large range of hips, knees and shoulders that were designed to be used without cement, in a press-fit fashion. Many of these designs such as the Harris Galante (Zimmer), PCA (Howmedica) and Taperloc (Biomet) incorporated porous metal coatings into the surface of the prosthesis, aimed at promoting a mechanical interlock between the bone and the prosthesis during the healing process. These surfaces were variously composed of a “spaghetti” like wire construct [2] attached to the prosthesis using a technique called diffusion bonding, sintered metal beads [3] applied by a similar method, or by a porous layer of metal powder [4] applied by a thermal plasma spray method. After some early failures due to poor mechanical design, such techniques became very popular for younger patients. The National Joint Registry of England, Wales and Northern Ireland reports that over half of total joint replacements are performed today in a cementless fashion [5,6], with good long-term outcomes. Although there are still many different types of porous metal coatings and surface modifications on the market, plasma spray coatings have become by far the most popular. Firstly, it is a very cost effective solution that is readily applicable to all designs of joint replacement. Secondly, the results are good even at long-term follow up [4,7,8,9].

In 1984, another important technology was introduced to the market. An English surgeon named Ronald Furlong introduced a cementless hip stem incorporating a surface coating of a ceramic called hydroxyapatite, which was also applied using a thermal plasma spraying technology. Hydroxyapatite is a constituent of natural bone and the coating was designed to promote the growth of new host bone around the prosthesis during the healing process.

The results of the Furlong HAC stem have been excellent [7], and many of today’s world leading brands of cementless hips and knees incorporate a coating of hydroxyapatite or a bi-coating of plasma spray metal (to create a roughened surface) followed by a sequential layer of hydroxyapatite.

Purpose of Coatings and Types Available

Plasma spray coatings on joint replacement prostheses are designed to encourage new bone formation around an implant, thereby improving fixation and long-term survival of the artificial joint. Many studies have shown that a well applied coating does produce the required outcome [4,7,8,9], especially in total hip and knee replacement.

Accentus Medical has developed a global reputation for the development and proprietary production of its Acusure® range of high quality plasma spray coatings aimed at meeting the requirements of its customers around the world.

The quality and validation of such coatings are governed by a series of international standards (e.g. ISO, ASTM) devised and controlled by regulatory authorities around the world. (e.g. EU Notified Bodies, FDA). These requirements are described in the following sections of this paper.

International Standards and Regulatory Requirements

The plasma spraying of metal and hydroxyapatite coatings for orthopaedic implants is governed by a number of ISO and ASTM standards and FDA good practice guidelines. These cover the input materials specification, the control of the coating process, and the properties of the resultant coating.

TITANIUM RAW MATERIAL & COATING

The specification and validation of the input raw materials used to produce orthopaedic implants, and to produce titanium coatings applied to orthopaedic implants, are covered by several key documents.

ISO 5832-2 “Implants for surgery – metallic materials – unalloyed titanium” and ASTM F67 “Specification for unalloyed titanium for surgical implant applications” specifically refer to the ingot or other feedstock from which orthopaedic implants are machined, and the material used to produce powder that is subsequently sprayed onto implants to produce a titanium coating. ASTM F1580 “Titanium Powders for Coating of Surgical Implants” specifies the physical and chemical characteristics of the powder for plasma spraying.

The guidelines require a range of metallurgical analy-
sis, microstructure and mechanical properties of the coated surface:
• Metallurgical analysis of the materials
• Microstructure of the modified surface
• Mechanical properties of modified surface
• Manufacturing details

These specifications are to assess the suitability of the coating for its primary purpose, to produce a rough finish to assist with bone integration onto the orthopaedic component. The properties of the coating may differ from that of the input raw material.

ASTM and ISO standards apply to the majority of the tests including:
• ASTM F-1044 “Shear testing of calcium phosphate coatings and metallic coatings”
• ASTM F-1147 “Standard test method for tension testing of calcium phosphate and metallic coatings”
• ASTM F-1160 “Shear and bending fatigue testing of calcium phosphate and metallic medical and composite calcium phosphate/metallurgical coatings”
• ASTM F-1854 “Stereological evaluation of porous coatings on medical implants”
• ASTM F-1978 “Measuring abrasion resistance of metallic thermal spray coatings by using the Taber™ Abraser”
• ISO 9220 “Metallic and related coatings: scanning electron microscope method for measurement of local thickness of coating by examination of cross sections”.

HYDROXYAPATITE RAW MATERIAL & COATING

The specification and validation of both the input raw materials and the hydroxyapatite coatings applied to orthopaedic implants are covered by a number of key documents, mainly BS ISO 13779-2, “Implants for Surgery – Hydroxyapatite Part 2 Coatings of hydroxyapatite” and guidelines produced by the FDA “510(k) Information Needed for hydroxyapatite Coated Orthopaedic Implants”, March 10, 1995 [11].

The FDA guidance document requires the following information for validation of the hydroxyapatite coatings:
• Particle size and particle size distribution, pore volume and porosity;
• Coating thickness and tolerance as measured by scanning electron microscopy;
• Chemical analysis of the hydroxyapatite powders before and after coating, including Ca/P ratios, elemental analysis;
• Bond strength of the hydroxyapatite coating;
• Solubility products of hydroxyapatite before and after coating;
• Dissolution rate of hydroxyapatite before and after coating;
• XRD patterns of hydroxyapatite before and after coating;
• Infrared spectra of hydroxyapatite before and after coating;
• The coating tested shall be as close to final product to market as practically possible (so processed, cleaned, packaged and sterilised).

ASTM and ISO standards apply to the majority of the tests. For example:
• ISO 13779-2 “Hydroxyapatite - Coatings of hydroxyapatite”
• ISO 13779-3 “Hydroxyapatite - Chemical analysis and characterisation of crystallinity and phase purity”
• ISO 13779-4 “Hydroxyapatite - Determination of coating adhesion strength”
• ASTM F 1044 “Shear testing of calcium phosphate coatings and metallic coatings”
• ASTM F 1147 “Tension testing of calcium phosphate and metallic coatings”
• ASTM F 1185 “Composition of hydroxyapatite for surgical implants”
• ASTM F 2024 “X-ray diffraction determination of phase content of plasma sprayed hydroxyapatite coatings”

There is some variation worldwide, sometimes in the tests themselves, others in the number of tests required for statistical validity. The authors’ experience in regulatory requirements includes Europe, North America, South America, Africa, Asia and Australasia. Dr Andrew McCabe is the convener of the ISO TC150 ceramics working group involved with hydroxyapatite coatings of medical devices.

Coatings – Specifications, Testing and Validation

The authors have experience validating plasma sprayed titanium (chemically pure titanium, CpTi) and hydroxyapatite coatings used in the coating of orthopaedic implants.

PROCESS AND SOFTWARE VALIDATION

The equipment and the process of applying plasma spray titanium and hydroxyapatite coatings to specific customer products requires validation by Installation Qualification (IQ), Operational Qualification (OQ), Performance Qualification (PQ) and Computer Software Qualification (CQ) methodology, as recommended e.g. by the Global Harmonisation Task Force. [12]
COATING DESIGN VALIDATION

The coatings used on an orthopaedic product are subject to design validation requirements. In addition to the design criteria for the implant itself (performed by the device manufacturer), the coating vendor produces coating design validation masterfiles to support the device manufacturer’s product. It should be demonstrated that the coating does not itself cause any negative effect on the final coated product, for example shear fatigue properties.

TITANIUM COATING

Table 1 summarises the physical, mechanical and chemical testing, the international ISO and ASTM standards to which the testing is performed, the regulatory limits and the typical test results achieved with a quality titanium coating.

<table>
<thead>
<tr>
<th>Property</th>
<th>Standards</th>
<th>Requirement</th>
<th>Typical Value (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Tensile</td>
<td>ASTM F 1147, FDA Guidance [10]</td>
<td>>22 MPa</td>
<td>40 MPa</td>
</tr>
<tr>
<td>Static Shear</td>
<td>ASTM F 1044, FDA Guidance [10]</td>
<td>>20 MPa</td>
<td>38 MPa</td>
</tr>
<tr>
<td>Abrasion</td>
<td>ASTM F 1978, FDA Guidance [10]</td>
<td><65 mg @ 100 cycles</td>
<td>PASS</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>ISO 13179-1</td>
<td>< 5%</td>
<td>< 2%</td>
</tr>
<tr>
<td>Oxygen</td>
<td></td>
<td>< 10%</td>
<td>< 4%</td>
</tr>
<tr>
<td>Hydrogen</td>
<td></td>
<td>< 0.2 %</td>
<td>< 0.1%</td>
</tr>
<tr>
<td>Carbon</td>
<td></td>
<td>0.08 %</td>
<td>0.02 %</td>
</tr>
<tr>
<td>Iron</td>
<td></td>
<td>0.50 %</td>
<td>0.04 %</td>
</tr>
<tr>
<td>Silicon</td>
<td></td>
<td>0.06 %</td>
<td>0.012 %</td>
</tr>
<tr>
<td>Chlorine</td>
<td></td>
<td>0.20 %</td>
<td>0.04 %</td>
</tr>
<tr>
<td>Sodium</td>
<td></td>
<td>0.50 %</td>
<td>0.19 %</td>
</tr>
<tr>
<td>Magnesium</td>
<td></td>
<td>0.50 %</td>
<td>< 0.01 %</td>
</tr>
<tr>
<td>Titanium</td>
<td></td>
<td>Balance</td>
<td>Balance</td>
</tr>
</tbody>
</table>

* These are typical results obtained for a quality titanium coating. The data significantly exceed the minimum regulatory requirements.

In addition, thickness, porosity and density measurements are performed and reported. In these cases there are no pass/fail criteria documented in the associated standards and guidelines.

A number of OEMs, and a few independent suppliers, offer titanium and hydroxyapatite coating by ‘vacuum’ plasma spray (VPS). This process uses a reduced pressure of inert gas (typically 0.1 atmospheres), and claims mechanical and chemical properties substantially in excess of regulatory requirements, although at a premium price. Standard air plasma spray (APS) coatings are less dense than VPS, mainly due to less particle melting. They contain increased, but acceptable levels of oxygen, nitrogen and hydrogen due to pick up from the atmosphere and achieve coating strength in excess of the minimum regulatory requirements.

The Acusure® range uses a mixture of inert (nitrogen and argon) and reducing (hydrogen) gases within its air plasma to carefully control the structure and properties of the coating. The properties of such coatings are therefore more favourable than those generally found in the open literature for APS coatings.

A typical SEM cross section microstructure of an angular titanium coating, sprayed onto a titanium substrate (LHS white area), is shown in Figure 1a, with an SEM image of the surface topography in Figure 1b. There is the option of several alternative grades of angular titanium, providing coatings of different roughness.

Figure 1a: Cross section of a 100 micron thick Acusure angular titanium coating.

Figure 1b: The surface of an Acusure angular titanium coating.
HYDROXYAPATITE COATING

Table 2 summarises the physical, mechanical and chemical testing, the international ISO and ASTM standards to which the testing is performed, the regulatory limits and the test results achieved with a quality hydroxyapatite coating.

In addition, thickness, porosity and density measurements, infra-red spectroscopy, and solubility and dissolution testing are performed and reported. In these cases there are no pass/fail criteria documented in the associated standards and guidelines.

The selection of hydroxyapatite raw material, and the process parameters used, result in the production of a high purity and exceptionally high crystallinity hydroxyapatite coating (80% crystallinity compared to a minimum regulatory requirement of 45%). Re-testing after five-year ageing demonstrates a very stable coating with a low level of solubility and dissolution rate.

An example of SEM cross section microstructure of a hydroxyapatite coating, sprayed directly onto a grit blast-ed titanium substrate (LHS white area), is shown in Figure 2a, with an SEM image of the surface topography in Figure 2b.

Table 2. Properties of plasma sprayed hydroxyapatite coating

<table>
<thead>
<tr>
<th>Property</th>
<th>Standards</th>
<th>Requirement</th>
<th>Typical Value (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Shear</td>
<td>ASTM F 1044, FDA Guidance [11]</td>
<td>None</td>
<td>>30 MPa</td>
</tr>
<tr>
<td>XRD phase analysis:</td>
<td>ISO 13779-2, ASTM F 2024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca/P ratio</td>
<td>FDA Guidance [11]</td>
<td>1.65 - 1.76</td>
<td>1.70</td>
</tr>
<tr>
<td>Crystallinity</td>
<td></td>
<td>45%</td>
<td>80 %</td>
</tr>
<tr>
<td>% HAP</td>
<td></td>
<td>> 50%</td>
<td>92.7%</td>
</tr>
<tr>
<td>% α-TCP</td>
<td></td>
<td><5%</td>
<td>3.2 %</td>
</tr>
<tr>
<td>% β-TCP</td>
<td></td>
<td><5%</td>
<td>4.1 %</td>
</tr>
<tr>
<td>% TCCP</td>
<td></td>
<td><5%</td>
<td>None detected</td>
</tr>
<tr>
<td>% CaO</td>
<td></td>
<td><5%</td>
<td>None detected</td>
</tr>
<tr>
<td>Trace elements:</td>
<td>ISO 13779-2, ASTM F 1185-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>FDA Guidance [11]</td>
<td>3 ppm</td>
<td>< 3 ppm</td>
</tr>
<tr>
<td>Cd</td>
<td></td>
<td>5 ppm</td>
<td>< 5 ppm</td>
</tr>
<tr>
<td>Hg</td>
<td></td>
<td>5 ppm</td>
<td>< 5 ppm</td>
</tr>
<tr>
<td>Pb</td>
<td></td>
<td>30 ppm</td>
<td>< 20 ppm</td>
</tr>
<tr>
<td>Total heavy metals</td>
<td></td>
<td>50 ppm</td>
<td>< 30 ppm</td>
</tr>
</tbody>
</table>

* These are typical results obtained for a quality hydroxyapatite coating. The data significantly exceed the minimum regulatory requirements.

It is worth noting that the titanium in Figure 1 is deliberately designed as a roughened angular coating, while the hydroxyapatite in Figure 2 is a more homogenous coating.

PRE-CLINICAL TESTING

In 2002, as part of studies on the validation of plasma spray coatings, a study was commissioned [13] on the effect of coating on early implant osseointegration, using a rabbit model. The study was performed using protocols suggested by two international guidelines:

- “Evaluation of Medical Devices for Biological Hazards: Tests for Local Effects After Implantation.” (ISO 10993 part 6)
- Standard Practice for Assessment of Compatibility of Biomaterials for Surgical Implants With Respect to Effect of Materials on Muscle and Bone” (ASTM F981-93)
In this model, the implants were pins of 3mm diameter manufactured from Cobalt/Chrome/Molybdenum alloy. The pins were sequentially shot blasted in order to provide a roughened surface, and coated where appropriate.

The surface coatings investigated within the study were as follows:
- Uncoated shot blasted pins, used as a control
- Coated with a 100 micron coating of titanium powder
- Bi-coated sequentially with 100 microns of titanium powder and 100 microns of hydroxyapatite
- Bi-coated coated sequentially with 100 microns of cobalt chrome powder and 100 microns of hydroxyapatite

At surgery, each animal received one control pin implanted trans-cortically into the proximal femur and one coated pin distally in the same femur. The animals were sacrificed at either two months or three months and then examined histologically.

Excised femora each containing one implant plug and one control were placed whole into 70% ethanol. After 48 hours fixation the femora were divided, using a band saw, into proximal and distal sections each containing one implant plug, ensuring that there was at least 2mm of bone around each plug. After suitable labelling, the samples were dehydrated through a series of graded alcohols, defatted in acetone, returned to 100% alcohol prior to infiltration with methyl methacrylate. Samples were polymerised with fresh methyl methacrylate at 55°C.

The blocks were trimmed using a diamond band saw to expose the implant in a transverse section of the bone. Two 300 micron slices were prepared with the band saw. These slices were then attached to glass slides using hot quartz wax and a compression jig. These sections were then ground to an optical thickness using 30 micron grade aluminium oxide in ethane diol (10% w/v) as an abrasive. Sections were finally stained with Toluidine Blue and mounted with a cover glass and DPX mounting medium.

Specimens were examined visually using transmission bright field light microscopy using x20 and x40 objectives. To verify the findings of these examinations, quantitative histomorphometry was then performed at the implant bone interfaces. This was performed utilising OsteoMeasure™ software to quantify osteoid surface, osteoid volume and eroded surface.

Representative examples of the visual findings are shown in Figures 3 and 4.

The results of the quantitative histomorphometry are shown in Table 3.

Although the number of animals in the study was relatively small, the main reported findings of the study can be summarised as follows:
- The metal coatings or sequential coatings of metal plus hydroxyapatite significantly improved osseointegration and new bone growth compared to uncoated controls.
- There was a suggestion that sequential coatings of metal followed by hydroxyapatite promoted a more rapid normalisation of bone growth at the implant interface than plasma sprayed metal only coatings. This may be important as it would theoretically shorten healing times and allow earlier weight bearing for patients following surgery.
Table 3. Summary of Quantitative Histomorphometric Analysis

<table>
<thead>
<tr>
<th></th>
<th>Osteoid volume %</th>
<th>Osteoid Surface %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncoated 3 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.444</td>
<td>8.443</td>
</tr>
<tr>
<td>Std Error</td>
<td>0.161</td>
<td>1.948</td>
</tr>
<tr>
<td>N</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Coated 2 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.748</td>
<td>11.278</td>
</tr>
<tr>
<td>Std Error</td>
<td>0.220</td>
<td>2.771</td>
</tr>
<tr>
<td>N</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Coated 3 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>2.347*#</td>
<td>21.919*#</td>
</tr>
<tr>
<td>Std Error</td>
<td>0.397</td>
<td>1.022</td>
</tr>
<tr>
<td>N</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

*Significantly different from uncoated implant at 3 months P< 0.05
#Significantly different from coated implant at two months P< 0.05

Clinical Use of Thermal Plasma Sprayed Coatings

Over 16 years of clinical use, with over 200,000 implanted devices, there have been no reports of any implant failure which could be attributed to problems related to Accentus Medical’s Acusure® coating or adverse bone / tissue reaction. The development of good quality coating processes has resolved challenges from cleaning, entrapment of grit media, oil or polishing compounds. The coatings have been used in primary and revision hip and knee prostheses, shoulder and elbow replacements, tumour replacement implants and pedicle screws. The coatings have been applied to implants manufactured by many different customers and implantations have taken place successfully in every continent of the world.

To illustrate the efficacy of hydroxyapatite coating in a clinical setting, Figure 5 displays Scanning Electron Microscopy of a cross section of a coated device showing formation of viable living bone at the device surface.

The presence of viable new bone, even in such difficult cases as limb salvage surgery, provides good evidence of the biocompatibility and efficacy of thermal plasma sprayed hydroxyapatite coatings.

Summary

This paper summarises the early history of cementless prostheses and subsequent development, specification, validation, regulatory requirements and clinical performance of thermal plasma spray coatings provided by Accentus Medical. The growth in their use is confirmed by the National Joint Registry of England, Wales and Northern Ireland, which reports that over half of total joint replacements are currently cementless, with good long-term outcomes. Globally, there have been several million implantations of devices incorporating such coatings, with very few reports of issues related to any aspect of the coating itself. Cementless prostheses, with Accentus Medical’s Acusure® plasma spray coatings, have good long-term outcomes with over 200,000 implanted devices over a sixteen year history. Many products incorporating this technology have received PMA or 510(K) approvals for the USA market and many have also been awarded an (A) rating by the Orthopaedic Data Evaluation Panel (ODEP) [15]. Thermal plasma spray coatings are a tried and tested technology that have brought benefits to millions of patients around the world for the last thirty years.

Disclosure

The authors declare that there is no conflict of interest regarding the publication of this paper. For full disclosures refer to last page of this journal.
References:
7. HA ceramic coated femoral stems in young patients Sing S. Et al –JBJS (Br) 2004;86-B:1118 -23.

Perhaps you were a patient and you were able to regain an important part of your life. Or, perhaps you are simply someone interested in medical research and seeking a new way to participate. Whatever the case, your generosity in helping to fund research is critical to our success - and much appreciated.

The Joint Implant Surgery & Research Foundation is a not-for-profit 501(c)(3) corporation. Your contributions enable scientific discoveries that will help future patients. Contributions over the years from people like you have helped to shape orthopaedics today.

Contributions
Donations of any amount will immediately be put to use to fund ongoing and future orthopaedic research projects.

How to Give
• Your gift of cash, securities or other negotiable assets is immediately put to use in our research.
• Your contributions are fully tax deductible as specified under Section 501(c)(3) regulations.

For more information please visit our website at www.jisrf.org or contact us at:

Joint Implant Surgery & Research Foundation
46 Chagrin Shopping Plaza, #117
Chagrin Falls, OH 44022
440.785.9154

Play a Role in Our Ground Breaking Research
CASE STUDY

Patient-specific Component Alignment in Total Hip Arthroplasty

Pierrepont J 1,2, Stambouzou C 2, Miles B 3, O’Connor P 2, Ellis A 3, Molnar R 4, Baré J 5, Solomon M 6, McMahon S 7, Shimmin A 5, Li Q 1, Walter L 8, Marel E 8

Abstract

Appropriate component alignment is critical for improving stability, maximising bearing performance and restoring native anatomy after Total Hip Arthroplasty (THA). Due to the large variation in patient kinematics between functional activities, current technologies lack definition of what constitutes correct target alignment. Analysis of a large series of symptomatic THA patients confirms that apparently well-orientated components on standard radiographs can still fail due to functional component malalignment. Evidently, previously defined “safe zones” are not appropriate for all patients as they do not consider the dynamic behaviour of the hip joint.

The Optimized Positioning System™ (OPS™) comprises preoperative planning based on a patient-specific dynamic analysis, and patient-specific instrumentation for delivery of the target component alignment. This paper presents the application of OPS™ in three case studies.

Keywords: total hip, arthroplasty, implant positioning

Level of Evidence: AAOS Therapeutic Level IV

© 2016 Pierrepont, Stambouzou, Miles, O’Connor, Ellis, Molnar, Baré, Solomon, McMahon, Shimmin, Li, Walter, Marel. All rights reserved. Authors retain copyright and grant the journal right of first publication with the work. Reconstructive Review follows the Creative Commons Attribution-NonCommercial CC BY-NC. This license allows anyone to download works, build upon the material, and share them with others for non-commercial purposes as long as they credit the senior author, Reconstructive Review, and the Joint Implant Surgery & Research Foundation (JISRF). An example credit would be: “Courtesy of (senior author’s name), Reconstructive Review, JISRF, Chagrin Falls, Ohio”.

1 James Pierrepont MEng (Biomedical) PhD Candidate, Professor Qing Li
 The University of Sydney, Camperdown NSW 2006, AU
 (Direct reprint requests to Jim Pierrepont)
2 Catherine Stambouzou MEng (Biomedical), Dr Brad Miles PhD, Peter B O’Connor MBA
 Optimized Ortho Pty Ltd, Pymble NSW 2073, AU
3 Dr Andrew Ellis MBBS FRACS FaOrthA
 OrthoNorth, St Leonards, NSW 2065, AU
4 Dr Robert Molnar MBBS FRACS
 Sydney Orthopaedic Trauma & Reconstructive Surgery, Kogarah NSW 2217, AU
5 Dr Jonathan Baré MBBS FRACS, A/Prof Andrew Shimmin MBBS FRACS
 Melbourne Orthopaedic Group, Windsor VIC 3181, AU
6 Dr Michael Solomon MBChB FRACS
 Sydney Orthopaedic Specialists, Randwick NSW 2031, AU
7 Dr Stephen McMahon MBBS FRACS FaOrthA
 Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Malabar
 Orthopaedic Clinic, Windsor VIC 3181, AU
8 Dr Leonard Walter MBBS FRACS FAOrthA, Dr Ed Marel MBBS FRACS FRCSed FAOrthA
 Peninsula Orthopaedics, Dee Why NSW 2099, AU
Introduction

Appropriate component alignment is critical for improving stability, maximising the performance of the bearing and restoring native anatomy after Total Hip Arthroplasty (THA). Femoral and acetabular component malalignment are key contributors to the leading causes of THA revision [1]. If appropriate component alignment can be achieved in all patients, the THA revision burden would be significantly reduced.

The limited precision with which a defined target alignment can be achieved intraoperatively, without assistive technologies, has been widely published [2-4]. Computer assisted surgery, and more recently robotics, were introduced to improve precision, but with slow uptake from the orthopaedic community. The limited acceptance of assistive technologies is likely due to the poor definition of what constitutes the correct target alignment for an individual. Contemporary literature has questioned the appropriateness of the most commonly accepted guidelines for implant alignment, with more failures observed when adhering to historical recommendations, than when not [5].

Edge-loading, accelerated wear, impingement and dislocation are leading contributors to THA revision. All occur during functional activities when the position of the pelvis and femur are different from that seen on standard radiographs or on the operating table [6-11]. Hip kinematics are specific to each individual and change the functional alignment of the components [10]. Consequently, component alignment should be planned individually, using dynamic information, if we want to optimise to reduce failure.

The Optimized Positioning System™ (OPS™) is a commercially-available medical device for patient-specific preoperative planning, intraoperative delivery and postoperative analysis in Total Hip Arthroplasty (Optimized Ortho, Sydney, Australia) [12]. The system comprises a preoperative planning and analysis component, along with patient-specific instrumentation for intraoperative delivery. The planning uses standard medical imaging to assess each patient’s alignment, bone morphology and kinematics, and analyses the bearing contact mechanics and impingement using a rigid body dynamic simulation of functional activities. To date, over 3,000 patients have received OPS™ preoperative planning in Australia and Europe. This paper presents the application of OPS™ in three case studies.

Methods

Functional imaging: In the weeks preceding the operation each patient receives three lateral functional radiographs; standing, flexed seated and step-up (raising the contralateral leg), Fig 1. On each of the functional images, pelvic tilt, sacral slope and lumbar lordotic angles are measured. The measured angles are used to define the positions of the bones at the limits of hip flexion and extension. In addition, bony geometry for each patient is captured in a low-dose Computed Tomography (CT) scan and three-dimensional coordinates of soft tissue and bony landmarks are virtually identified.

Implant positioning: Using the manufacturer’s 3D implant geometries, femoral stem and acetabular shell templating is performed by a qualified engineer, Fig 2. The implants are virtually positioned within the patient’s femur and acetabulum to restore native anatomy and to achieve optimal metaphyseal loading. The surgeon can feed into the preoperative plan any patient-specific clinical observations or requirements, such as preoperative leg length discrepancies measured at clinical review.

Figure 1. The functional pelvic tilt, sacral slope and lumbar lordotic angles are measured from three lateral functional radiographs: standing, flexed seated and step-up.
Dynamic simulation: The segmented bone models and planned component alignment are inputs to a rigid body dynamics simulation of flexion and extension activities, driven by the kinematic inputs from the functional radiographs. The simulation calculates the magnitude and direction of the hip joint reaction force throughout the two activities and determines the path of the contact patch [13,14] as it traces across the articulating surface, Fig 3. These contact patch paths are presented in a polar plot that represents the bearing surface in two dimensions viewed perpendicular to the face of the cup. The polar plots are generated for nine different cup orientations, defined in angles of radiographic inclination and anteversion [15], Fig 4. The nine plots demonstrate the effect of cup orientation on contact mechanics across a patient-specific zone, to assist the surgeon in determining an optimal cup orientation for the patient.

Preoperative report: The preoperative plan, including results from the dynamic analysis and implant templating, is presented to the surgeon for approval in the weeks prior to surgery. The system determines a preliminary target orientation based on a series of preferences defined by the surgeon. These parameters take into consideration the surgeon’s accepted ranges for acetabular inclination and anteversion, the surgical approach, acetabular shell coverage, acceptable boundaries from the anterior and posterior edges of the bearing, as well as any expected changes in pelvic kinematics postoperatively. The surgeon has the opportunity to change the templated implants and target orientation prior to finalising the plan.

Patient-specific guide design: Two patient-specific guides are designed to deliver the preoperative plan in surgery. The acetabular guide is designed to fit within the patient’s acetabulum and guide the planned cup orientation, Fig 5a. The femoral guide is designed to fit on the available surface of the femoral head and neck and guide the planned femoral osteotomy, Fig 5b. Once the guide designs have
been accepted by the surgeon, both guides and corresponding bone models are 3D printed from medical grade Nylon and sterilised for use in surgery.

Intra-operative delivery: The OPS™ guides can be used with any surgical approach. After the surgeon performs their routine exposure, the femoral guide is positioned on the femoral head-neck junction, and secured in place with a spring-loaded pin. The osteotomy is made along the open capture feature on the femoral guide. The acetabular guide is then seated within the acetabulum after the fat pad and any soft tissue remnants in the acetabular fossa are excised. The in vivo position can be checked against the markings on the sterile bone model. A laser handle connects to the axis of the guide and projects the target orientation onto the operating room ceiling or wall. A second laser mounted to the pelvis is orientated to converge with the projection on the ceiling or wall, and secured to mark the target orientation relative to the pelvis. Any intra-operative movement of the pelvis will therefore not affect the target orientation, which is not dependent on a particular position in the operative theatre. Reaming is completed per the surgeon’s routine technique, to the preoperatively planned depth. Final cup orientation is guided by a laser on the end of the impactor handle. The handle is orientated so the laser aligns with the projection of the pelvic reference laser. Cup orientation is also confirmed by referencing anatomical features such as osteophytes around the acetabulum to the rim of the cup, using the markings on the sterile bone model. The placement of the patient-specific guide and planned cup in the acetabulum can also be visualised in three-dimensional models on a tablet during the operation.

All patients provided consent that they were happy to be involved in the case series review.

Results

Case Study 1

79 year old male requiring right side THA, Fig 6. Patient also had an arthritic left side. CT analysis showed equal pre-op leg length. The femoral neck osteotomy was planned 13mm above the lesser trochanter to provide 0mm of lengthening on the right side. 3D planning recommended a 125° Metafix stem (Corin Group, Cirencester, UK) with a +4mm head and the cup positioned 2mm off the true acetabular floor. Planned stem anteversion was 21° to preserve the AP position of the native femoral head.

Dynamic analysis showed the patient had minimal pelvic movement between functional positions, with no risk of edge-loading. Consequently, due to the low risk profile of the patient’s pelvic kinematics, the surgeon chose a standard cup orientation of 40°/20° (inclination/anteversion). Large osteophytes could be visualised in the OPS™ report which was used intraoperatively as a guide for what needed to be removed, Fig 7.

The procedure was performed through a posterolateral approach.
Case Study 2

52 year old female requiring right side THA. CT analysis showed a 6mm leg length discrepancy (LLD), with the right side shorter. The femoral neck osteotomy was planned 15mm above the lesser trochanter to provide 6mm of lengthening on the right side, Fig 8. 3D planning recommended a lateralised TriFit stem (Corin Group, Cirencester, UK) with the cup positioned 2mm off the true acetabular floor. This alignment restored global hip offset. Planned stem anteversion was 18° to preserve the AP position of the native femoral head.

Dynamic analysis showed the patient had a significant anterior pelvic tilt (32°) in the flexed seated position, Fig 1. This represented a 25° anterior rotation from standing, and highlighted the risk of posterior edge-loading and instability in flexion. There was minimal sagittal pelvic rotation from supine to standing. There were no signs of degenerative disease of the lumbar spine. The surgeon would generally favour a ceramic-on-ceramic bearing in this younger patient. However, given recent literature showing an increased risk of squeaking in patients with large anterior pelvic tilts in flexion [11], the surgeon chose to discuss bearing choice with the patient in more detail. In consultation with the patient, the decision was made to use a ceramic-on-ceramic bearing, with a target orientation of 34°/27° (inclination/anteversion). The amount of uncovered posterosuperior shell could be visualised in the OPS™ report, Fig 9.

The procedure was performed through a posterolateral approach.

Case Study 3

51 year old male with contralateral THA required right side replacement. CT analysis showed a 3mm LLD, with the right side shorter. The femoral neck osteotomy was planned 20mm above the lesser trochanter to provide 3mm of lengthening on the right side, Fig 2. 3D planning recommended a lateralised TriFit stem (Corin Group, Cirencester, UK) with the cup positioned 2mm off the true acetabular floor. This alignment restored global hip offset. Planned stem anteversion was 21° to preserve the AP position of the native femoral head.

Dynamic analysis showed significant changes in pelvic tilt during functional activities. The pelvis rotated 15° posterior from the supine to the standing position, leaving the patient with a 19° posterior pelvic tilt in extension. In the flexed seated position the pelvic tilt was 5°, a 24° anterior rotation from the standing position. There were no signs of degenerative disease of the lumbar spine. With the patient potentially at risk of functional cup malrotation in both flexion and extension, a dual mobility bearing was considered most appropriate by the operating surgeon, with a target orientation of 42°/13° (inclination/anteversion).

The procedure was performed through a direct anterior approach.
Discussion

Total hip arthroplasty is a successful operation, providing pain free function for patients with debilitating osteoarthritis. Fortunately, the procedure is relatively forgiving of component malalignment, and this has concealed the poor levels of precision achievable without assistive technologies [2-4,16-21]. Despite the generally high rates of patient satisfaction, failures still occur. It is important to address these failure mechanisms through responsible innovation, in both preoperative planning, as well as intraoperative delivery, to continue to improve outcomes and reduce revision rates in THA.

This paper provides an introduction to the OPS™ dynamic planning and delivery system for THA. Using standard medical imaging, OPS™ determines optimal component sizing and alignment for each patient. The defined targets are then achieved intraoperatively using 3D patient-specific guides. The OPS™ technology emphasises the importance of component alignment as well as functional analysis of patients.

The position of the pelvis in the sagittal plane changes significantly between functional activities [10]. The extent of change is specific to each patient. Often components will appear well oriented on standard views, but become malorientated during more functionally-relevant postures. Lembeck et al. showed that for every 10° of pelvic rotation in the sagittal plane, the anteversion of the acetabular component will change by around 7° [22]. Posterior pelvic rotation will increase the functional anteversion and inclination of the acetabular cup. This mechanism is protective in flexion, but problematic in extension. Conversely, an anterior pelvic rotation will decrease the functional orientation of the acetabular component. This is beneficial in extension, but can lead to posterior instability in flexion. It is not possible to predict these functional pelvic tilts from a standard AP radiograph.

Understanding the clinical relevance of functional component malalignment in the symptomatic THA was the catalyst for the development of the OPS™ preoperative planning system. Analyses of hundreds of symptomatic THA patients confirmed that apparently well-orientated components on standard pelvic radiographs can still fail due to impingement, dislocation, squeaking and runaway wear [23]. Fig 10 shows an example of a patient with recurrent anterior dislocation. Computer-assisted surgery was used to implant the acetabular component at an orientation of 42°/25° through a posterolateral approach. The supine radiograph looks unremarkable. However when standing, the patient’s pelvis rotated posteriorly by 23°, leading to a functional cup orientation in extension of 54°/42° and anterior subluxation. Retrospective OPS™ analysis determined a more appropriate target orientation, given the patient’s kinematics, would have been 34°/9°. This orientation would have reduced the risk of anterior subluxation in extension, whilst maintaining a safe boundary at the posterior edge in flexion.

The precision of the acetabular patient-specific guides has been confirmed in clinical practice. In a consecutive series of 100 OPS™ THAs, Spencer-Gardner et al. showed mean absolute deviations from the planned cup inclination and anteversion of 3.9° and 3.6° respectively. 91% of cups were within 10° of both the planned inclination and anteversion [24]. These results are comparable with published data on the precision of computer-assisted THA surgery [16-19], summarised in Table 1. Importantly, the OPS™ system defines a patient-specific target derived from functional, dynamic analysis, and does not require any registration to define the intraoperative reference frame.

Recreation of the femoral head centre in THA is important for maintaining leg length and offset, as well as improving muscle function and tissue tension. The femoral neck osteotomy can influence the size and alignment of the femoral component in THA, which in turn can affect the position of the prosthetic head centre. Dimitriou et al. dem-
provides a dynamic simulation and personalized implant
mal femoral anatomy. The OPS™ preoperative planning
three-dimensional position of the femoral head and prox-
does not provide the surgeon with information about the
Further, templating from two-dimensional radiographs
do not consider this dynamic behaviour of the hip joint.
"safe zones" are not appropriate for all patients as they
ment of the prosthetic components. Previously defined
will assist in attaining the desired post-operative leg length.
Table 1: Summary of published precision of the acetabular cup
orientation for computer-assisted surgeries as compared with the

<table>
<thead>
<tr>
<th>Literature Reference</th>
<th>Mean Absolute Inclination Deviation ± SD (Range)</th>
<th>Mean Absolute Anteversion Deviation ± SD (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalteis 2006</td>
<td>3.6° to 12°</td>
<td>4.2° to 10°</td>
</tr>
<tr>
<td>Lass 2014</td>
<td>3.0° ± 2.5°</td>
<td>5.5° ± 3.6°</td>
</tr>
<tr>
<td>Hohmann 2011</td>
<td>3.4° to 6.8°</td>
<td>5.5° ± 4.0°</td>
</tr>
<tr>
<td>Gurgel 2014</td>
<td>3.0° ± 6.2°</td>
<td>5.5° ± 3.8°</td>
</tr>
<tr>
<td>Spencer-Gardner 2016</td>
<td>3.9° ± 6.2°</td>
<td>3.6° ± 3.2°</td>
</tr>
</tbody>
</table>

The OPS™ preoperative planning and delivery system is an innovative new technology that provides a dynamic simulation and personalized implant alignment, from standard medical imaging.

Two-dimensional radiographs are conventionally used to template implant sizes and plan the femoral neck osteotomy. Often, the scale of the radiographs and the rotational alignment of the proximal femur misrepresent the patient’s anatomy. The OPS™ preoperative planning determines the optimal position of the components to restore native anatomy and to achieve optimal metaphyseal loading based on three-dimensional reconstruction of the anatomy from CT. The target osteotomy is defined from the planned stem position, and delivered intraoperatively with a 3D printed guide.

In a series of 33 cases performed by two surgeons at a single institution, the OPS™ femoral guides reproduced the planned osteotomy level within 1mm in 85% of the cases [26]. Accurately achieving the optimal osteotomy will assist in attaining the desired post-operative leg length.

Hip kinematics are highly variable between individuals and between different functional activities. These dynamic changes have a significant effect on the functional alignment of the prosthetic components. Previously defined “safe zones” are not appropriate for all patients as they do not consider this dynamic behaviour of the hip joint. Further, templating from two-dimensional radiographs does not provide the surgeon with information about the three-dimensional position of the femoral head and proximal femoral anatomy. The OPS™ preoperative planning and delivery system is an innovative new technology that provides a dynamic simulation and personalized implant alignment, from standard medical imaging.

Disclosure
One or more of the authors have disclosed information that may present potential for conflict of interest with this work. For full disclosures refer to last page of this journal.

References
Our inaugural World Arthroplasty Congress held in Paris in 2015 was a great success with over 1,200 attendees representing over 68 countries throughout Africa, Asia, Europe, Middle East, North America, Oceania, Russia and South America.

Stay informed about our plans for an even better congress in 2018, including:

- Call for abstracts — more opportunities to showcase your work in oral presentation formats
- Registration opening — we’ll be offering some exciting incentives to register early
- Our dynamic and interactive 3-day agenda featuring over 75 orthopaedic experts from around the world

Submit your email address for regular congress updates at:

www.icjr.net/2018rome
CASE REPORT

Prosthetic Fracture of a Cemented Exeter Femoral Stem

Facek M¹, Khatib Y¹, Swarts E²

Abstract

We present a single case of fracture of an Exeter femoral prosthesis at the neck, occurring after a fall from standing height, in a lean 70yr lady at 6 years post implantation. The fracture propagated from the insertion dimple on the superior aspect of the prosthesis shoulder. Materials analysis suggested variance in composition of the alloy, particularly with grain size heterogeneity. Whilst Exeter femoral prosthesis fracture is extremely rare, when it does occur the literature suggests it is often in the context of excessive mechanical stresses (obesity, high offset, falls). However, this case may represent a failure of materials rather than mechanical stresses alone.

Keywords: hip arthroplasty, prosthesis failure, stem fracture, hip prosthesis, revision total hip replacement

Level of Evidence: AAOS Therapeutic Level IV

Introduction

The Exeter™ Universal hip stem (Stryker Inc., Newbury, UK) is a commonly used and well-performing prosthesis in hip arthroplasty. The Australian Orthopaedic Association National Joint Replacement Registry has recorded its use in 91,601 procedures, which includes 71,849 total hip replacements and 19,752 hip hemiarthroplasties (unipolar, bipolar and trauma stem types), of both the older Exeter type and modern Exeter V40 type. [1] The overall revision rate for all stem types is low, at 0.61 revisions/100 observed years.

The Exeter stem is a highly polished, double tapered, stainless steel stem, designed for use with acrylic bone cement. The modern or Universal Exeter stem was introduced in 1988 with the addition of more sizes and offset options while preserving the original shape and design. [2]

The Exeter stem is reported to have excellent long term survival results, and failure due to stem fracture is an extremely rare occurrence. [3,4]

1 Dr Michael Facek BSc; Dr Yasser Khatib BSc(Med) MBBS, M Sports Med, FRACS (Orth), FAOrthA
Department of Orthopaedics, Nepean Hospital, Sydney, NSW, AU
(Direct reprint requests to Michael Facek)

2 Dr Eric Swarts
Department of Medical Engineering and Physics, Royal Perth Hospital, Perth 6000, Western AU

© 2016 Facek, Khatib, Swarts. All rights reserved. Authors retain copyright and grant the journal right of first publication with the work. Reconstructive Review follows the Creative Commons Attribution-NonCommercial CC BY-NC. This license allows anyone to download works, build upon the material, and share them with others for non-commercial purposes as long as they credit the senior author, Reconstructive Review, and the Joint Implant Surgery & Research Foundation (JISRF). An example credit would be: “Courtesy of (senior author’s name), Reconstructive Review, JISRF, Chagrin Falls, Ohio”.

ReconstructiveReview.org • JISRF.org • Joint Implant Surgery & Research Foundation
Case Report

Our patient is a healthy and lean (71kg) 70 year old female, who underwent routine right hip arthroplasty in 2009 for osteoarthritis, via posterior approach. A cemented, flanged polyethylene cup (Contemporary Acetabulum, Stryker Inc.) was inserted with a cemented, size 0 Stryker Exeter V40 stem with 44mm offset, and a metal (CoCr) 28mm +0 head. Our patient had an unremarkable post-operative recovery and her hip arthroplasty had been functioning well with no complications.

In June 2015, she had a fall from standing height causing a painful right hip. Radiographic examination showed a femoral prosthetic fracture at the base of the neck of the femoral component (Fig 1).

After discussion and appropriate consent, we performed cement-in-cement revision surgery to exchange the broken femoral stem using a new Exeter femoral component. Intra-operatively, the implant appeared well-fixed without signs of loosening or infection. Positioning of the cup and stem and were appropriate, with an intact satisfactory cement mantle, although the shoulder of the stem was proud of the level of femoral osteotomy by 10mm.

The stem fracture had initiated from the insertion guide ‘dimple’, at the point of its maximum diameter, and propagated transversely (Fig 2). The proximal neck fragment and taper well were engaged with the femoral head, and in turn were located in the acetabular component. The acetabular component had an intact rim with no signs of neck impingement and no evidence of eccentric wear of the cup.

The patient underwent revision of the femoral stem utilizing the previous posterior approach and a cement-in-cement revision technique. The stem was removed without damaging the cement mantle, and a smaller stem of the same design (Exeter 44mm No.00) designed for the use in cement-in-cement revisions was used. The cement cavity was cleaned and thoroughly dried, and the new stem installed using cement within the existing mantle with a hollow centraliser (Fig 3). The surgical procedure proceeded successfully and the patient made an uneventful recovery. She was allowed to mobilise full weight bearing on day one and received rehabilitation with physiotherapy prior to discharge 6 days after surgery. Our patient received routine post-operative follow up and reported good function with Oxford Hip Score 37, 12-months after her revision surgery.

Fig 1: Prosthetic fracture of a polished, tapered, collarless femoral stem; a cemented polyethylene cup has been used.

Fig 2: The prosthetic stem fracture propagated inferiorly from its origin at the insertion “dimple”.

Fig 3: Successful cement-in-cement technique using smaller sized stem.
Results

Retrieval analysis of the fractured Exeter components was performed. Macroscopically, “beach marks” were seen across the fractured surface, a sign of chronic material fatigue (Fig 4). Evidence of corrosion was detected along the medial edge and posterior surface of the stem, with minor corrosion in the trunion and no evidence of corrosion on the neck. The stem exhibited heterogeneity of microstructure; specifically, there was a high proportion of large grains near the prosthesis surface, which can be observed when an alloy has re-crystallized after heat-treatment, whereas the rest of the stem was fine-grain austenite (Fig. 5). This variance in composition has been noted in previous prosthesis retrieval analysis [5] which showed that coarse grain size, and grain heterogeneity, were consistent with lower fatigue and yield strengths.

Chemical analysis of the stem composition was undertaken with SpectroMaxx Optical Emission Spectroscopy (OES) to verify composition; there were minor, non-significant aberrations in manganese and nitrogen, but no evidence of abnormalities to account for fracture (Table 1). More significant was variability of microhardness with distinct hardness difference according to grain size. The average hardness of large grains was 292 Hv, while average hardness of small grains was 362 Hv.

Table 1: Chemical analysis

<table>
<thead>
<tr>
<th>Element</th>
<th>Composition %</th>
<th>Composition limits (ISO 5832-9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>0.05</td>
<td>0.08 max</td>
</tr>
<tr>
<td>Silicon</td>
<td>0.25</td>
<td>0.75 max</td>
</tr>
<tr>
<td>Manganese</td>
<td>4.32</td>
<td>2 - 4.25</td>
</tr>
<tr>
<td>Nickel</td>
<td>9.3</td>
<td>9 - 11</td>
</tr>
<tr>
<td>Chromium</td>
<td>21.7</td>
<td>19.5 - 22</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>2.2</td>
<td>2 - 3</td>
</tr>
<tr>
<td>Niobium</td>
<td>0.28</td>
<td>0.25 - 0.8</td>
</tr>
<tr>
<td>Sulphur</td>
<td>0.003</td>
<td>0.01</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.02</td>
<td>0.025 max</td>
</tr>
<tr>
<td>Copper</td>
<td>0.07</td>
<td>0.25 max</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>0.56</td>
<td>0.25 - 0.5</td>
</tr>
<tr>
<td>Iron</td>
<td>balance</td>
<td>balance</td>
</tr>
</tbody>
</table>

Chemical composition of the femoral stem compared to composition limits outlined in ISO 5832-9, showing only manganese and nitrogen to be slightly outside specified norms.

SEM of the fracture surface revealed dimple rupture, cracking, beach marks and some areas showing fatigue striations, common to a fatigue failure. Apart from the insertion guide hole, no other obvious stress risers were detected near the crack initiation zone. The fracture initiated at the anterosuperior edge of the stem in close proximity to the stem insertion guide hole. Lack of proximal bone or cement support at this region can result in increased bending forces.

Discussion

The Exeter™ stem is a polished and double-tapered collarless stainless steel stem with a “V40” Morse taper and a hollow distal centraliser which allows subsidence for compressive loading throughout the cement mantle. There is a “dimple” on the superior aspect of the shoulder to allow the introducer pin to secure the stem during insertion, a potential stress riser which was relevant in this case.

The evolution of the Exeter stem is relevant as much of the previous literature reviewed older stem generations
that are no longer used. The polished, double-tapered collarless Exeter stem originated in 1970, manufactured from stainless steel alloy (EN58J); at the time, British manufacturing standards required that stems made of this alloy be polished. It was designed for a posterior approach, and the rationale for the double taper was to improve cement compression during insertion. The stem had good results, but due to reports of fracture at the neck, the material was changed to 316L stainless steel in 1976; at the same time, the surface finish was altered to a matte type. In 1983, nitrogen was added to create an alloy that was stronger and more corrosion resistant; this was classed as a “high-nitrogen stainless steel” (HNSS) and marketed as Orthinox™. The finish was ultimately reverted to the polished type in 1986 due to inferior results.

The Exeter is a superior prosthesis with a long history and excellent long term results in all major registries [6]. Specifically, the Contemporary/Exeter stem combination has a 10yr revision rate of ranging from 3.2-6.0% depending on acetabular component choice. [1] Prosthesis fracture rates are extremely low in modern type HNSS stems with polished, tapered morphology.

Beach marks and fatigue striations noted on the fracture surface in our case indicate a fatigue mode of failure. Variation in microstructure, as well as hardness, suggest alloy segregation. Large grains near the surface are most likely a form of secondary recrystallization as a result of heat treatment. These are significant factors that can predispose the stem to failure. Unfortunately this is not an isolated case and we have observed grain size and hardness variation on five previous Exeter stem fractures. [5] Only the manganese and nitrogen concentration slightly exceeded the compositional limits outlined in ISO 5832-9. These are only minor non-conformances and would not be expected to have any influence in stem failure. Other clinical factors that may have contributed to failure include: patient fall, medium to high activity level and femoral canal morphology.

There are very few reports in the literature of femoral prosthetic fractures at the neck or trunion, and most of these date back to use of out-dated designs and materials. In 1995, Rokkum reported on a series of 3 stem fractures in a cohort of 27 Exeter hips that were followed over 10 years [2] but this was an analysis of older style stems manufactured between 1983 and 1985. More recently, Yates et al reported on two prosthetic neck fractures, both in obese patients (BMI 33 and 49) who were very active, and with high-offset (44mm) stems [7]. They made particular note of the variability in grain size seen with one of those two stems after metallurgical analysis, and hypothesized that the combination of high loads and material aberrations may contribute to neck fracture.

Swarts et al (2007) examined 6 fractured femoral stems, which occurred within a 3 year period (2002-5), four of which were Exeter stems; all were of modern design with HNSS components [5]. The fractured stems were all examined by stereomicroscopy and scanning electron microscopy, and their chemical composition determined. Three of the fractures occurred at stem and only one occurred at the superior aspect of neck, although it was not at the insertion guide hole as in our case. None had chemical composition anomalies. Swarts hypothesized that an abundance of coarse grains near the surface in the stems that fractured (an abnormality in the manufacture process) was detrimental to controlling micro-fracture propagation and hence shortened the fatigue life; they suggested further microstructural optimization as part of the manufacture process.

Yates (2008) reported on 5 Exeter prosthesis fractures, two of which were fractures of the neck [7]. They proposed a distinction in the cause of fractures of the prosthetic neck (which they associated with mechanical overload) and stem fractures (associated with fatigue fracture and grain size anomalies). The neck fractures were again not associated with the insertion guide hole. Akinola (2009) then reported on a single case of Exeter prosthetic neck fracture in a 121kg male who had a fall from standing height [8]. In agreement with the suggestion of Yates, the failure was attributed to mechanical overload, and the authors suggested a recommended maximum weight be considered for the Exeter prosthesis. O’Neil (2011) et al reported on a single Exeter prosthetic neck fracture that had propagated from the insertion guide hole, just as in our case [9]. This stem however was a cement-in-cement type, which is narrower in design. The failure occurred at 5 years post implantation in a patient with a BMI of 27.8.

Davies (2013) reported on four fractures of modern design V40TM Exeter stems, all of which occurred within the body [10]. All four of the patients were classed as obese. Three of the patients were noted to have “low” neck cuts, with proud shoulders, although the authors noted that the technique guide specifically refers to the neck resection as unimportant.

Hamlin et al (2014) reported on a single case of Exeter prosthesis fracture at the trunion-neck junction, in an obese (141kg), elderly male patient who sustained a fall from standing height [11]. He was also noted to have a relatively under-sized stem. Analysis of the stem concluded the fracture had initiated from the lateral side of the trunion-neck junction, and was due to fatigue. They proposed that consideration be given to the situation of highly overweight patients given the increased stresses they subject a standard prosthesis to, and highlighted that the problem
may become increasingly frequent given the trend in rising BMI globally.

Reito et al (2015) reported on three fractured Exeter prostheses, all of which occurred more proximally along the neck, and near to the trunnion [12]. All patients were overweight (BMI>25, weights of 84kg, 92kg and 120kg), with higher offset stems (No. 44), 36mm heads and “plus-size” heads (+5mm, +8mm and +10mm offsets). They reviewed their series of 2,521 Exeter femoral stems to calculate a prosthesis fracture rate of 0.1% overall. They hypothesized that the combination of obese patients, high offset stems and large heads (with extended offsets) may be increasing lever arm forces significantly, and may warrant investigation.

In our case we believe the factors implicated in the Exeter stem fracture include:

- Poor proximal support (loosening)
- Canal morphology (champagne-glass femurs)
- Poor microstructural homogeneity
- Surface corrosion

Conclusion

The Exeter femoral stem has a long history with reliable results. There are few reports in the literature of failure at the prosthetic neck, and these rare cases are associated with increased mechanical strain: falls, increased body weight, increased offset, and increased femoral head size. The failure of the Exeter prosthesis in our case is likely a result of a combination of factors including poor microstructural homogeneity, high patient activity level, poor proximal support and a mechanical fall. Our case is unique in that the patient had few of the typical risk factors; whilst she did have a No. 44 stem, she was not overweight, and had a smaller prosthetic head (28mm) without increased offset. Her materials analysis may indicate that some degree of manufacture variance may have contributed to her prosthesis fracture. Future cases of prosthetic neck failure should undergo material analysis.

Disclosure

The authors declare that there are no conflict of interest regarding the publication of this paper. For full disclosures refer to last page of this journal.
Make ICJR Your Source for Orthopaedic Education

Attend any one of our live events, including Global Congresses, CME Courses and Resident Training Programs.

Interact with experts and colleagues on hot topics in orthopaedics, benefit from enhanced access to on-line content, practice marketing support, and discounted text books.

Access a wealth of educational content anytime, anywhere from your computer or mobile device.

JOIN ICJR AND HELP SHAPE THIS GROWING GLOBAL COMMUNITY GIVING BACK TO ORTHOPAEDICS!

www.icjr.net

EXCELLENT COURSE! I LEARNED MANY NEW INNOVATIVE IDEAS THAT I WILL TAKE BACK TO MY PRACTICE

9TH ANNUAL WINTER HIP & KNEE COURSE
VAIL CASCADE | VAIL, CO
JANUARY 12-16, 2017

Register at www.icjr.net/2017winter

Mark your calendar for the ICJR Winter Hip & Knee Course in beautiful Vail, Colorado!

The 2016 course brought together more than 250 orthopaedic surgeons and allied healthcare professionals who learned about the latest trends in hip & knee surgery from our internationally renowned faculty.

For 2017, we have planned an exciting, interactive program featuring didactic presentations, video vignettes, case-based panel discussions, and live surgeries.
Prosthetic Hip Loosening Due to Brucellar Infection: Case Report and Literature Review

Tebourbi A1, Hadhri K2, Salah M2, Bouzidi R1, Kooli M2

Abstract

Context: Brucellosis is actually considered to be the commonest zoonotic infection worldwide; conversely prosthetic infection due to brucella is extremely rare. Although diagnostic is easily achieved, management of such situations is extremely challenging.

Aims: To report the case of prosthetic hip loosening due to brucellar infection, discuss management manners and to summarize data about 19 cases reported in the literature.

Methods: We report the case of a 73-year-old woman with brucellar prosthetic hip loosening treated with 2-stage exchange of the prosthesis and prolonged double antibiotherapy

Results: At two years follow up the patient is pain free with total functional recovery and no clinical and radiographic signs of prosthetic loosening

Conclusions: Brucella should be evocated as a cause of total joint arthroplasty infection especially in patients from endemic regions and with occupational exposure. Antibiotic treatment alone can be followed if there are no signs of implant loosening. Tow stage revision should be considered in other cases

Keywords: total hip arthroplasty; prosthetic joint infection; Brucellosis

Level of Evidence: AAOS Therapeutic Level IV

Introduction

Brucellosis is now considered to be the commonest zoonotic infection worldwide with more than 500,000 new cases annually [1,2]. According to the World Organization for Animal Health, North Africa has been traditionally considered endemic. Brucellosis affects several types of animals, including cows, sheep, goats, deer, pigs and dogs. Six species of gram-negative bacteria belonging to the genus Brucella are responsible for infection: B. melitensis, B. abortus, B. suis, B. canis, B. ovis, and B. neotomae. Only the first four are able to infect humans by ingestion of con-
taminated food or drinks, inhalation of the organism, or inoculation through skin abrasion.

Osteoarticular infection is the most common complication and has been described with rates of 10% – 85% in patients infected by brucella [3,4]. It affects the large joints, especially the sacro-iliac joint. Spondylitis, bursitis, tenosynovitis and osteomyelitis have been also described [5-11].

Conversely prosthetic infection due to brucella is extremely rare. In the literature there are 19 cases of total joint arthroplasty infected by Brucella involving only 9 hips.

In the present report we describe a case of prosthetic hip loosening due to this infection and review the literature.

Case Report

73-year-old woman presented to our hospital in March 2002 with two years history of hip pain. After radiographic examination, the patient was diagnosed with osteoarthritis of the hip. The peripheral white blood cell (WBC) count was 5500 cells/mm³, the erythrocytes sedimentation rate (ESR) was 50 mm/h, and the C-reactive protein (CRP) level was 4.8 mg/l.

She underwent cemented Charnley total hip arthroplasty through a posterior approach. Culture of specimen from the synovium obtained during surgery was negative and microscopic examination showed degenerative changes.

The hip was pain free and annual postoperative radiographs were satisfactory until the 10th year.

On February 2012 the patient was hospitalized for L2-L3 and T6-T7 brucellar spondylitis with discovevertebral needle biopsy showing brucellar granuloma, positive Rose bengal test and 1/640 brucella serum antibody titer. She received standard chemotherapy with oral Doxyciline and Rifampicine.

In February 2014 the patient presented complaining of hip pain that had been present for the previous 8 months. There were no external signs of infection and no previous episod of fever. Radiographic examination showed evident signs of prosthetic loosening [Figure 1]. The inflammatory biomarkers included blood leukocytes count (8700 cells/mm³) and C-reactive protein level (7.6 ng/l). A revision total hip arthroplasty (THA) was planned because of suspected aseptic loosening.

During the surgical procedure, purulent white fluid poured out of the joint with abundant necrotic tissue and marked loosening of the prosthesis.

At this stage revision total hip arthroplasty was abandoned and we proceed to resection arthroplasty through a large femorotomy [Figure 2] Several bacteriologic culture specimen and materials for pathologic examination were taken.

Empirical antibiotic treatment with Rifampicine 600 mg and Ofloxacin 400 was started.

The bacteriological culture were negative but serum antibody titer for Brucella was 1/320 and microscopic ex-
amination showed a brucellian granuloma. The antibiot-
ic chemotherapy was maintained for 3 months. Ofloxacine
wasn’t changed because a history of digestive disagree-
ment during the previous uses of Doxycycline

A second stage of THA reimplantation was performed
at the end of the antibiotic treatment period. At two years
follow up the patient is pain free with total functional re-
covery and no clinical and radiographic signs of prosthetic
loosening [Figure 3].

Discussion

Infection is considered to be the most devastating of
prosthesis-related complication, leading to prolonged hos-
pitalization, repeated surgical intervention. The incidence
of prosthetic joint infection (PJI) is 1–2.5% for primary hip
or knee replacements and 2.1 – 5.8% for revision surger-
ies [12-14].

The majority of infections (65%) are caused by aerob-
ic gram-positive cocci, most commonly Staphylococcus
aureus, coagulase negative staphylococci and enterococci.
Aerobic gram-negative bacilli, anaerobes and mycobacte-
rial infection are far less frequent [15]. PJI due to Brucella
is an extremely rare condition, and only 19 cases have been
reported in the literature [16-28]. The demographic char-
acteristics of the 19 cases and our patient are summarized
in Table 1 [Table 1]. Among these patients, there were 12
men with a mean age of 59 years. Most patients had occu-
pational exposure to brucella history of unpastorised milk
products consumption and lived in areas where brucellosis
is endemic. The Hip was involved in 10 patients. Knees
were involved in 8 patients with two bilateral cases. Sys-
temic symptoms of brucellosis as fever, headache, weak-
ess, sweetness, profuse sweating, splenomegaly, adenop-
athy are non specific and were present in only four cases.
Local symptoms as night pain, swelling, local inflamma-
tion, sinus tract formation and restriction of the joint move-
ment were present in nearly all cases. Radiographic signs
of loosening were found in nine cases. The rate of isolation
of brucella in patients with osteoarticular brucellosis os-
cillates between 33% and 77% [3]. In the reviewed cases
culture of synovial fluid sample or tissue sample recovered
brucella in 17 cases (85%). In one case the germe was iso-
lated from a sinus tract discharge [28] and from blood sam-
ple in two cases [18,23]. Laboratory culture of brucella
is often unsuccessful because of the slow-growing nature
of these microorganisms and the requirement for special
media and high Co2 tension. So the culture period should
be made longer than usual and clinicians should notify the
laboratory staff if there is a suspicion of brucellosis [29].
Negative joint culture result does not rule out osteoarticu-
lar brucellosis and the diagnosis can be made through the
detection of specific antibodies in serum. In active brucel-
losis, high titers of IgM antibodies can be detected by stan-
dard agglutination and Rose Bengal tests, which are fol-
lowed by an increase of IgG and IgA antibodies in chronic
stage of the disease [30]. In our review 18 patients (90%) had
positive titers of specific antibodies (>=80) . Gener-
ally joint prosthesis can become infected through three dif-
f erent routes: Implantation, hematogenic infection, and re-
activation of latent infection [31]. In Brucellar PJI most of
the authors support the hematogenous route [24]. Previous
spinal brucellosis in our patient supports this septic patho-
genesis of the articular involvement. Because of the rare
occurrence of PJI caused by Brucella, there is no consen-
sus on its management. The most accepted course is an-
tibiotic treatment with removal or retention of prosthetic
components [23]. A variety of drugs have activity against
brucella, however the results of in vitro susceptibility tests
do not always predict clinical efficacy [32]. The intracellu-
lar localization of brucella is believed to offer some protec-
tion against antimicrobials, and drugs with good penetra-
tion into cells are thought necessary for cure. Monotherapy
for brucellosis has generally been considered inadequate
due to unacceptably high relapse rate. Of the 20 cases that
we reviewed, 14 were treated with double antibiotic ther-
apy [16-18,20-23,25-28], the most used association was
Doxycycline and Rifampicine (8 cases) this association of
fers the advantage of an all-oral treatment and was recom-
manded by the World Health Organization (WHO) in 1986
[33] and by Consensus “ Loannina Recommendations” for
Table 1: Summary of the reported cases in the literature

<table>
<thead>
<tr>
<th>Year</th>
<th>Age / sex</th>
<th>Implant</th>
<th>Exposure</th>
<th>Symptoms</th>
<th>Radiology</th>
<th>Surgical treatment</th>
<th>Antibiotic treatment</th>
<th>Recurrence</th>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones et al (16)</td>
<td>1983</td>
<td>54 /M</td>
<td>THA</td>
<td>Professional</td>
<td>Systemic</td>
<td>No Loosening</td>
<td>Surgical debridement</td>
<td>Doxycycline 6w/ Streptomycine 6w</td>
<td>No</td>
</tr>
<tr>
<td>Agarwall et al (17)</td>
<td>1991</td>
<td>24/f</td>
<td>02 TKA</td>
<td>No</td>
<td>local</td>
<td>No Loosening</td>
<td>NO</td>
<td>Rifampicine 19m/ cotrimoxazole 19m</td>
<td>NO</td>
</tr>
<tr>
<td>Malizos et al (18)</td>
<td>1997</td>
<td>74 /M</td>
<td>02 TKA</td>
<td>Professional</td>
<td>Systemic</td>
<td>No Loosening</td>
<td>NO</td>
<td>Streptomycine 3w/ Doxycycline 5m</td>
<td>yes</td>
</tr>
<tr>
<td>Orti et al (19)</td>
<td>1997</td>
<td>60 /M</td>
<td>TKA</td>
<td>Professional</td>
<td>local</td>
<td>No Loosening</td>
<td>NO</td>
<td>Doxycycline 6w Rifampicine 6w Streptomycine 3w</td>
<td>NO</td>
</tr>
<tr>
<td>Ortega et al (20)</td>
<td>2002</td>
<td>63 /M</td>
<td>THA</td>
<td>Professional</td>
<td>local</td>
<td>Prosthetic loosening</td>
<td>2 stage replacement</td>
<td>Streptomycine 3w Doxycycline 3m</td>
<td>NO</td>
</tr>
<tr>
<td>Weil et al (21)</td>
<td>2003</td>
<td>38 /M</td>
<td>THA</td>
<td>Unpasteurised milk consumption</td>
<td>local</td>
<td>Prosthetic loosening</td>
<td>2 stage replacement</td>
<td>Doxycycline 12w Rifampicine 12w</td>
<td>NO</td>
</tr>
<tr>
<td>Weil et al (21)</td>
<td>2003</td>
<td>61 /M</td>
<td>TKA</td>
<td>Unpasteurised milk consumption</td>
<td>local</td>
<td>Prosthetic loosening</td>
<td>2 stage replacement</td>
<td>Doxycycline 12w Rifampicine 12w</td>
<td>NO</td>
</tr>
<tr>
<td>Weil et al (21)</td>
<td>2003</td>
<td>67 /M</td>
<td>TKA</td>
<td>Unpasteurised milk consumption</td>
<td>Systemic</td>
<td>Prosthetic loosening</td>
<td>2 stage replacement</td>
<td>Doxycycline 12w Rifampicine 12w</td>
<td>NO</td>
</tr>
<tr>
<td>Kasim et al (22)</td>
<td>2004</td>
<td>54 /F</td>
<td>THA</td>
<td>No</td>
<td>local</td>
<td>Prosthetic loosening</td>
<td>1 Stage replacement</td>
<td>Vibramycin 5m Rifampicine 5m</td>
<td>NO</td>
</tr>
<tr>
<td>Cairo et al (23)</td>
<td>2006</td>
<td>50 /M</td>
<td>THA</td>
<td>Professional</td>
<td>local</td>
<td>NR</td>
<td>NO</td>
<td>Doxycycline 26m Streptomycine 2w</td>
<td>NO</td>
</tr>
<tr>
<td>Cairo et al (23)</td>
<td>2006</td>
<td>21 /M</td>
<td>THA</td>
<td>Professional</td>
<td>local</td>
<td>NR</td>
<td>1 Stage replacement</td>
<td>Doxycycline 6m Rifampicine 6m Streptomycine 10d</td>
<td>NO</td>
</tr>
<tr>
<td>Tena et al (24)</td>
<td>2007</td>
<td>56 /M</td>
<td>THA</td>
<td>Professional</td>
<td>local</td>
<td>Prosthetic loosening</td>
<td>2 Stage replacement</td>
<td>Doxycycline 2m Rifampicine 2m Streptomycine 2w</td>
<td>NO</td>
</tr>
<tr>
<td>Ruiz-Iban (26)</td>
<td>2006</td>
<td>66 /F</td>
<td>THA</td>
<td>Contact with Cattle</td>
<td>local</td>
<td>Prosthetic loosening</td>
<td>2 Stage replacement</td>
<td>Doxycycline 6w Rifampicine 6w</td>
<td>NO</td>
</tr>
<tr>
<td>Ruiz-Iban (26)</td>
<td>2006</td>
<td>71 /M</td>
<td>THA</td>
<td>Professional</td>
<td>local</td>
<td>No Loosening</td>
<td>Surgical debridement</td>
<td>Doxycycline 6m Rifampicine 6m Streptomycine 1m</td>
<td>NO</td>
</tr>
<tr>
<td>Tassinari et al (25)</td>
<td>2008</td>
<td>68 /M</td>
<td>TKA</td>
<td>NR</td>
<td>Systemic</td>
<td>No Loosening</td>
<td>NO</td>
<td>Doxycycline 8w Rifampicine 6w</td>
<td>NO</td>
</tr>
<tr>
<td>Wunschel et al (28)</td>
<td>2011</td>
<td>64 /F</td>
<td>TKA</td>
<td>NR</td>
<td>Local</td>
<td>Prosthetic loosening</td>
<td>1 Stage replacement</td>
<td>Doxycycline 8w Rifampicine 6w</td>
<td>NO</td>
</tr>
<tr>
<td>Erdogan et al (27)</td>
<td>2010</td>
<td>63 /F</td>
<td>TKA</td>
<td>Unpasteurised milk consumption</td>
<td>local</td>
<td>No Loosening</td>
<td>NO</td>
<td>Doxycycline 4m Rifampicine 4m</td>
<td>NO</td>
</tr>
<tr>
<td>Our Case</td>
<td>2014</td>
<td>73 /F</td>
<td>THA</td>
<td>Unpasteurised milk consumption</td>
<td>Local</td>
<td>Prosthetic loosening</td>
<td>2 Stage replacement</td>
<td>Rifampicine 6m Ciprofloxacine 6m</td>
<td>No</td>
</tr>
</tbody>
</table>

M= Male, F= Female ; TKA= Total Knee arthroplasty, THA= Total Hip arthroplasty ; y= years, m= Months, w= Weeks,
the Treatment of Human Brucellosis in 2006 [34]. The most used antibiotics are Doxycycline in 15 cases, Rifampicin in 14 cases, Streptomycin in 8 cases, Vibramycin in 1 case, cotrimoxasole in 1 case and ciprofloxacin in 1 case. In our patient, because of the digestive disagreement, we used fluoroquinolone which is considered as an acceptable alternative to doxycycline [34]. The total duration of antibiotic therapy necessary for eradication of the infection is unknown. In the review antibiotic treatment lasted from 6 weeks to a maximum of 26 months. Six Weeks is the duration recommended by the WHO and the Loannina Consensus. In six cases out of twenty the infection resolved with the sole use of the antibiotic therapy without having to resort to surgical revision [17,18,19,23,25,27]. In this patient there was no radiographic evidence of implant loosening. A single stage prosthetic revision was done in 3 cases but only because the infection had not been suspected from the beginning [22,23,28]. In 7 cases a two stages revision was done, this procedure is believed to be the treatment of choice for loosened total joint arthroplasty infected with brucella. In brucellosis, even with effective drug treatment, relapses occur in 5–10% of patients, usually in the early post-treatment period [34], in our review the infection was recurrent in only one patient out of twenty [18].

Conclusions

Brucella should be evocated as a cause of total joint arthroplasty infection especially in patients from endemic regions and with occupational exposure. Antibiotic treatment alone can be followed if there are no signs of implant loosening. Two stage revision should be considered in other cases.

Disclosure

The authors declare that there is no conflict of interest regarding the publication of this paper. For full disclosures refer to last page of this journal.

References

We welcome your ongoing support and encourage you to submit any new papers via our website: ReconstructiveReview.org.

A Call for Papers

Topics include:
- Original Articles
- Basic Science
- Case Reports
- Clinical/Surgical
- Commentary
- Controversial Issues (i.e. modularity, tapers, MoM)
- Healthcare Policy/Economics
- Reviews
- Letters to the Editor
- Surveys

We are also looking to expand our base of reviewers.

If you would like to become a reviewer for Reconstructive Review please visit our website to register.

If you require any assistance please contact David Faroo, Managing Editor at dfaroo@jisrf.org.

BRENNAN, MANNA & DIAMOND

is known nationally for its experience and expertise in Healthcare & Hospital Law.

From physicians to hospital medical staff, from home healthcare providers to allied health professionals and everything in between, BMD can develop and implement strategic plans specifically designed to help you meet and navigate the ever changing healthcare environment.

We serve as legal counsel AND as business and strategic advisors to our healthcare clients.

We give our clients peace of mind so they can get back to the business of caring for their patients.

For more information contact our Health Law Department
75 E. Market Street, Akron, OH 44308 • (330) 253-5060 • www.bmdllc.com
“Almost” is Not Clean Enough.

CarboJet®
CO₂ Bone Preparation System

Discover why so many surgeons are making CarboJet a standard part of their cement bed preparation technique. The CarboJet’s CO₂ gas jet quickly and thoroughly cleans and dries the bone surface by bringing blood, saline and, most importantly, fatty marrow elements to the surface where they are easily collected and removed. Cleaning and drying with CarboJet takes less time than is typically required for drying with lap sponges.

In clinical use since 1993, CarboJet has been shown to be safe and effective in multiple clinical studies and in tens of thousands of joint reconstructive procedures. Nozzles are available for use in TKA, UKA, THA, TSA and other cemented applications. Give it a try and see what a really clean bone bed is all about!

Clinically Proven

For additional information or to schedule a product evaluation, please give us a call at 800-827-5775. To view a video demonstration, visit us on the Web at: www.kinamed.com

Expect Innovation.

ReconstructiveReview.org • JISRF.org • Joint Implant Surgery & Research Foundation
GLOBAL | PERSONAL | PORTABLE
Make ICJR Your Source for Orthopaedic Education

REGISTER for an ICJR Meeting!
Attend our live events, including Global Congresses, CME Courses, Resident & Fellow Programs, and our International Affiliate meetings.

JOIN our Global ICJR Community!
Become a member of ICJR and enjoy the benefits of our global orthopaedic community. Receive discounts on meeting registrations, access premium content on ICJR.net, and help support resident & fellow education.

INSTALL the ICJR App and visit ICJR.net!
Access a wealth of educational content anytime, anywhere from your computer or mobile device.
ICJR Live Meetings Around the Globe

<table>
<thead>
<tr>
<th>MEETING</th>
<th>DATES</th>
<th>LOCATION</th>
<th>COURSE CHAIRS & DIRECTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24th Annual Perspectives in Total Joint Arthroplasty: Updates in Knee Replacement</td>
<td>Oct 21-22</td>
<td>Fall River, KS</td>
<td>J. Christopher Banwart, MD Kenneth A. Greene, MD</td>
</tr>
<tr>
<td>ICJR/KOA Instructional Course</td>
<td>Oct 20</td>
<td>Seoul, Korea</td>
<td>Henry D. Clarke, MD Dae Bae, MD</td>
</tr>
<tr>
<td>5th Annual Shoulder Course Featuring Advanced Concepts™ in Sports Medicine</td>
<td>Nov 3-5</td>
<td>Las Vegas, NV</td>
<td>Richard J. Friedman, MD FRCSC Raffy Mirzayan, MD John W. Sperling, MD, MBA Joseph D. Zuckerman, MD</td>
</tr>
<tr>
<td>ICJR Middle East</td>
<td>Nov 3-5</td>
<td>Dubai, UAE</td>
<td>Samih Tarabichi, MD</td>
</tr>
<tr>
<td>ICJR Instructional Course at the 11th International Congress of the COA</td>
<td>Nov 17</td>
<td>Beijing, China</td>
<td>Henry D. Clarke, MD Donald Kastenbaum, MD Yixin Zhou, MD</td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9th Annual Winter Hip & Knee Course</td>
<td>Jan 12-15</td>
<td>Vail, CO</td>
<td>Raymond H. Kim, MD Fred D. Cushner, MD Mark W. Pagnano, MD</td>
</tr>
<tr>
<td>Current Solutions in Foot & Ankle (a collaboration between ICJR and FORE)</td>
<td>Jan 26-28</td>
<td>Tampa, FL</td>
<td>Michael P. Clare, MD Craig S. Radnay, MD</td>
</tr>
<tr>
<td>5th Annual Revision Hip & Knee Course</td>
<td>Apr 6-8</td>
<td>Rochester, MN</td>
<td>Arlen D. Hanssen, MD George J. Haidukewych, MD R. Michael Meneghini, MD</td>
</tr>
<tr>
<td>ICJR Japan</td>
<td>Apr 14-15</td>
<td>Tokyo, Japan</td>
<td>Shuichi Matsuda, MD</td>
</tr>
<tr>
<td>MAOA Pre-Course: The Knee</td>
<td>Apr 19</td>
<td>Amelia Island, FL</td>
<td>Ryan M. Nunley, MD</td>
</tr>
<tr>
<td>5th Annual South/Real Life Orthopaedics Hip & Knee Course</td>
<td>May 18-20</td>
<td>Charleston, SC</td>
<td>Arlen D. Hanssen, MD George J. Haidukewych, MD R. Michael Meneghini, MD</td>
</tr>
</tbody>
</table>

Go to www.icjr.net for detailed information about upcoming meetings
Levels of Evidence

Reconstructive Review has adopted the American Academy of Orthopaedic Surgeons (AAOS) Levels of Evidence for Primary Research Question. These guidelines will now be part of the review process for manuscript submission.

Levels of Evidence For Primary Research Question

<table>
<thead>
<tr>
<th>Types of Studies</th>
<th>Therapeutic Studies – Investigating the results of treatment</th>
<th>Prognostic Studies – Investigating the effect of a patient characteristic on the outcome of disease</th>
<th>Diagnostic Studies – Investigating a diagnostic test</th>
<th>Economic and Decision Analyses – Developing an economic or decision model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level I</td>
<td>• High quality randomized trial with statistically significant difference or no statistically significant difference but narrow confidence intervals</td>
<td>• High quality prospective study (all patients were enrolled at the same point in their disease with (\geq 80%) follow-up of enrolled patients)</td>
<td>• Testing of previously developed diagnostic criteria on consecutive patients (with universally applied reference “gold” standard)</td>
<td>• Sensible costs and alternatives; values obtained from many studies; with multiway sensitivity analyses</td>
</tr>
<tr>
<td></td>
<td>• Systematic Review(^2) of Level I RCTs (and study results were homogenous(^3))</td>
<td>• Systematic review(^2) of Level I studies</td>
<td>• Systematic review(^2) of Level I studies</td>
<td>• Systematic review(^2) of Level I studies</td>
</tr>
<tr>
<td>Level II</td>
<td>• Lesser quality RCT (e.g. < 80% follow-up, no blinding, or improper randomization)</td>
<td>• Retrospective(^6) study</td>
<td>• Development of diagnostic criteria on consecutive patients (with universally applied reference “gold” standard)</td>
<td>• Sensible costs and alternatives; values obtained from limited studies; with multiway sensitivity analyses</td>
</tr>
<tr>
<td></td>
<td>• Prospective(^4) comparative study(^5)</td>
<td>• Untreated controls from an RCT</td>
<td>• Systematic review(^7) of Level II studies</td>
<td>• Systematic review(^2) of Level II studies</td>
</tr>
<tr>
<td></td>
<td>• Systematic review(^2) of Level II studies or Level I studies with inconsistent results</td>
<td>• Lesser quality prospective study (e.g. patients enrolled at different points in their disease or <80% follow-up.)</td>
<td>• Systematic review(^7) of Level II studies</td>
<td></td>
</tr>
<tr>
<td>Level III</td>
<td>• Case control study(^1)</td>
<td>• Case control study(^1)</td>
<td>• Study of non-consecutive patients; without consistently applied reference “gold” standard</td>
<td>• Analyses based on limited alternatives and costs; and poor estimates</td>
</tr>
<tr>
<td></td>
<td>• Retrospective(^6) comparative study(^5)</td>
<td>• Case control study(^1)</td>
<td>• Systematic review(^7) of Level III studies</td>
<td>• Systematic review(^2) of Level III studies</td>
</tr>
<tr>
<td></td>
<td>• Systematic review(^2) of Level III studies</td>
<td>• Systematic review(^2) of Level III studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level IV</td>
<td>Case Series(^8)</td>
<td>Case series</td>
<td>Case-control study</td>
<td>Analyses with no sensitivity analyses</td>
</tr>
</tbody>
</table>

1. A complete assessment of quality of individual studies requires critical appraisal of all aspects of the study design.
2. A combination of results from two or more prior studies.
3. Studies provided consistent results.
4. Study was started before the first patient enrolled.
5. Patients treated one way (e.g. cemented hip arthroplasty) compared with a group of patients treated in another way (e.g. uncemented hip arthroplasty) at the same institution.
6. The study was started after the first patient enrolled.
7. Patients identified for the study based on their outcome, called “cases”; e.g. failed total arthroplasty, are compared to those who did not have outcome, called “controls”; e.g. successful total hip arthroplasty.
8. Patients treated one way with no comparison group of patients treated in another way.
Charles Bechtol, MD

was internationally known in the fields of biomechanics and orthopedic surgery. His engineering and biomechanical research resulted in the development of numerous joint replacement implants and internal fracture fixation devices – instruments that are familiar to orthopedic surgeons the world over. His innovations included shoulder and knee prostheses, the Bechtol Total Hip system, the Bechtol “fluted” bone screw, and the Bechtol “continuous strength” bone plate.

Visit www.jisrf.org for more information.
Reconstructive Review Disclosure Statement

The following information will be published on each paper.

Please check one or more if pertinent of the following:

☐ 1. No benefits or funds were received in direct or indirect support of this article.
☐ 2. Benefits or funds were received in support of this article either directly or indirectly.
☐ 3. Either family, institution I am associated with, or I have received benefits or funds either directly or indirectly regarding this article.
☐ 4. Describe:

Author’s Signature: _____________________________________ (Typed signature is valid for online submission.)

Joint Implant Surgery & Research Foundation www.jisrf.org

Conflict of Interest Statement JISRF Orthopaedic Industry Affiliations (Past & Present)

Many Authors, Co-Authors, JISRF, or its Members have had affiliations past or present with one or more of these organizations:

AAHKS
AAOS
American Society of Biomechanics
Apex Surgical
Australian Orthopaedic Association
Bactrin International, INC.
Concept Design & Development
DePuy
Dow Corning Wright
Encore Medical
E.M. Warburg, Pincus & Co., LLC
Global Orthopaedic Technology
Harrington Arthritis Research Center
Howmedica
ISTA
Johnson & Johnson
Joint Medical Products Corp.
Kirschner
Kenesis Medical, Inc
Montreal General Hospital Orthopaedic Lab
NASA
ORS
OrthoDevelopment
OTI
Richards Manufacturing
Signature Orthopaedics
Smith & Nephew, Inc.
Society for Biomaterials
Zimmer

Disclosure Statement

JISRF and the Reconstructive Review take disclosure very serious and often readers don’t appreciate the indirect benefit writers receive in publications. Many of our contributors are officially associated with JISRF by the membership on study groups, editorial committee and or clinical / surgical advisors. JISRF is dependent on donations and commercial funding. The overall success of this funding benefits indirectly all that are associated with activities produced by JISRF.

Disclosure for Authors

Article 1, page 13.
Jemmett [1]; Roy [1]

Article 2, page 19.
McCabe [1]; Pickford [1]; Shawcross [1]

Article 3, page 27.
Pierrepont [2]; Stambouzou [3]; Miles [2]; O’Connor [2]; Ellis [1]; Molnar [1]; Baré [2]; Solomon [2]; McMahon [2]; Shimmin [2]; Li [1]; Walter [2]; Marel [2]

Article 4, page 35.
Facek [1]; Khatib [1]; Swarts [1]

Article 5, page 41.
Tebourbi [1]; Hadhri [1]; Salah [1]; Bouzidi [1]; Kooli [1]
Since 1948, the Greenbrier Clinic has been recognized as an industry leader in executive health and wellness through utilizing advanced diagnostics in the early diagnosis, prevention and treatment of disease. Building upon that history of medical excellence, Jim Justice, Chairman and owner of the Greenbrier Resort, has announced the creation of the Greenbrier Medical Institute. The institute’s 1st phase is projected to cost about $250 million, employ more than 500 people and include 3 buildings.

This phase will include an expansion of our world renowned executive health and wellness practice, The Greenbrier Clinic, which will be bolstered by a world-class sports medicine program, including an orthopedic surgery center and athletic performance/rehabilitation facility, all led by the Founder of the American Sports Medicine Institute, Dr. Jim Andrews and Chair of Cleveland Clinic Innovations, Thomas Graham. Rounding out the Institute’s services will be a first-in-class plastic and cosmetic surgery and Lifestyle Enhancement Academy, helping people look and feel their best. Physicians, universities, research foundations, medical journals and other healthcare industry leaders, all of whom are on the cutting edge of medical technology, research and care, have committed to join the project and establish an international research and education destination or “think tank” to stimulate research, drive innovation, force change and redefine how the world approaches health, wellness and longevity.

The Institute’s facility, designed by Willie Stokes, will feature Georgian architecture similar to the resort’s façade, a replica of the Springhouse, the site of the famous sulphur springs and special guests suites for patients and their families. Jack Diamond, President and CEO, and Mark Krohn, COO, are leading the development of this exciting project and are actively looking for other physicians and medical thought leaders to be involved.

For more information, please contact:

Mark E. Krohn, Chief Operating Officer
Greenbrier Medical Institute, 330-697-6581
mekrohn@bmdllc.com