

NORTHWESTERN UNIVERSITY

Effect of Optimizing Bone-Implant Contact on Hip Offset and Anteversion with Three Contemporary Uncemented Short Metaphyseal-Engaging Implants.

> Alejandro Marquez-Lara, MD Ronak M. Patel, MD S. David Stulberg, MD Department of Orthopaedic Surgery Northwestern University | Chicago, IL, USA

International Society of Technology in Arthroplasty Sydney, Australia October 2012

Disclosure

In Accordance with ACGME guidelines the author (SDS) acknowledges there is a financial relationship with Industry.

Royalties: Aesculap Consulting Fees: Aesculap, Innomed, Stryker, Zimmer

FDA status: All Devices Cleared

Introduction

- The goal of THA is to achieve long-term fixation and optimize hip kinematics by restoring offset and anteversion.
- Implant position and design play a major role in the extent of femoral contact and the resulting offset and anteversion.
- Hip instability and dislocation, both affected by implant offset and anteversion, continue to be a concern.

To analyze the resulting offset and anteversion of three short metaphysealengaging femoral implants after virtual placement with optimum bone-implant contact.

Methods and Materials

– 3 Proximally engaging stems

- Tri-Lock (DePuy Orthopaedics, Warsaw, IN)
 - Tapered straight stem
- ABG II (Stryker, Mahwah, NJ)
 - Anatomical
- ARC (Omnilife Science, East Taunton, MA)
 Femoral neck preserving

- Computer assisted CT-templating program - ORTHODOC (ISS Inc, Davis, CA)

- CT's of 30 patients were each templated with all three stems
 - » 15 right femurs
 - » 15 left femurs

Total of 90 templates

Virtual Templating

Tri-Lock

ABG II

Measuring Offset

Native Femoral Head Center Post-Template Implant Head Center

Measuring Femoral Neck and Implant Anteversion

Results - Offset

Stem	Offset <u>+</u> 2mm	Offset <u>+</u> 3mm	Offset <u>+</u> 5mm
Tri-Lock	53.3%(16/30)	73.3% (22/30)	96.7% (29/30)
ABG II	10% (3/30)	26.7% (8/30)	70% (21/30)
ARC	40% (12/30)	63.3% (19/30)	83.3% (25/30)

Virtually Templated Implants Compared to Native Femoral Offset (+/- 5mm)

Results - Tri-Lock Anteversion

Results - Anteversion

Stem	Stem Anteversion	Patient Native Anteversion	Difference
Tri-Lock	25.6° (10.5°-49.7°)		8.8 (-2.6-19.6°)
ABG II	35.8° (16.4°-61.5°)	16.8º (-4.4º-41.2º)	19.01° (11.6° - 31.3°)
ARC	20.4° (3.2°-43.3°)		3.6° (-3.4° - 16.3°)

Variation in Native and Implant Anteversion

Conclusions

- Tri-Lock: Most reliable at restoring native <u>offset</u> within 5mm and less reliable (average <10° difference) at restoring native <u>anteversion</u>.
- ABG II: Good reliability at restoring native <u>offset</u> within 5mm but least reliable at restoring native <u>anteversion</u> (Avg 19.01°).
- ARC: Good reliability at restoring <u>offset</u> within 5mm and most reliable at restoring <u>anteversion</u> (3.6°).

Clinical Relevance

•Stems that establish incomplete metaphyseal implantbone contact (Tri-Lock) allow for intramedullary adjustment of positioning which may allow restoration of anteversion and offset.

•Stems with more extensive circumferential metaphyseal implant-bone contact (ABGII) may have limited ability to restore anteversion and offset.

•Stems that achieve contact at the femoral neck follow the native anatomy (ARC).

Clinical Relevance

Tri-Lock ABG II ARC

Stem designs must aim to incorporate the features necessary to guarantee initial stable and durable long-term fixation while restoration anteversion and offset.

Thank You!

Canaima National Park, Venezuela

Chicago, IL, USA

