Lessons Learned:
Tissue Sparing THA

Mini-Symposium held prior to AAHKS
20th Annual Meeting
Friday, November 5, 2010
2pm-4pm

Sponsored by
The Joint Implant Surgery
&
Research Foundation

Supported in part by Omnilife science™
The concept of neck sparing stems or better described as neck stabilized stems is not new. Pipino, Freeman, Townley and Whiteside have all advocated saving the femoral neck in THA. The challenge has been to create a design that loads the medial calcar maintaining integrity of that bone structure.

JISRF has presented on this subject at a number of CME activities including “A New Approach To Neck Sparing THA” both as poster 32 at the AAOS, 2008 and as part of a Mini-Symposium held here at AAHKS in 2008 on “Cutting-Edge Developments on Proximal Modularity in THA”.

We are dedicated to the advancement of clinical/surgical outcomes in total joint arthroplasty and present this symposium in the tradition established by Professor Charles O. Bechtol, M.D. in 1971.

JISRF has established an international hip tissue sparing study group and welcome members of AAHKS to view and become members of this educational activity. www.jisrf.org
Course Overview

Historical Overview
Design Rationale
Pre-operative planning
Surgical Approaches
Intraoperative Techniques
Intraoperative Assessment
Learning Objectives

- Indicate a basic knowledge of tissue sparing designs for THA.
- Describe the various designs and limits of neck-sparing hip designs.
- Define the indications and contraindications for the use of neck-sparing THA.
- Review the early experience and describe lessons learned with neck-sparing THA.
Co-Directors:
S. David Stulberg, M.D. & Timothy McTighe, Dr. H.S. (hc)

Faculty
Charles Bryant, MD
Declan Brazil, PhD
John Keggi, MD
Louis Keppler, MD
Thomas Tkach, MD
Bradley K. Vaughn, MD

Contributors
Tony N. Aram, MD
Frank Schmidt, MD
Sam Sydney, MD

Moderators
Terry Clyburn, MD
Audley Mackel, MD
Ed McPherson, MD
Architectural Changes

- Changes take place after THA and these changes can lead to a loss of bone, implant loosening and implant revision.
Motivation to improve on tissue sparing (hard & soft)
Head Stabilized

Hip Resurfacing

Mid-Head Resection
Hip Resurfacing

- Steep Learning Curve
- Limited Indications
- Risk of Fracture
- Late Remodeling and Aseptic Loosening
- Limited to MOM Bearings
- Extensive Soft Tissue Dissection
- ? Conservative
Australian Registry

HR
high learning curve
limited indications 8-15%

All THA
2008 Australian Registry

Decreasing use
(8.9% of primary THR 2005)
(8.2% of primary THR 2006)
(7.6% of primary THA 2008)
Neck Stem Less Stabilized

To early to tell if this is going to be a viable concept. Will be design and technique dependent. McTighe
Short Taper Styles

Microplasty™ Hip Stems

TRI-LOCK®
Bone Preservation Stem
Neck Retention

- Provides better blood flow vs. hip resurfacing
- Provides better axial and torsional stability vs. conventional THA
- Provides for more tissue sparring approaches (both hard & soft tissue)
- Potential for less blood loss
- Potential for quicker rehab
Save the Neck
There is a historical reference to neck sparing THA

- Pipino started arguing save the neck 1977-78
- 1979 Pipino started implanting the Biodynamic stem
- Freeman, made the argument back in 1984 that modern hip stems should retain the femoral neck
- Studies showed that 70% of the blood flow to the femoral neck is retained after THA and the vitality of the bone is good (Pipino et. al., 2006)
The varus-turning moment increases by a factor of 4 when the neck is resected. Increase of femoral offset also increases torsional loads on the implant interface.

The bending moment is also reduced by saving the neck.

"the neck of the femur is not obviously reduced in strength in the osteoarthritic hip and is no more weaker than the rest of the femur in the inflammatory arthropathies."
Why Save The Neck?

Neck resection generates significant torsional moment at the stem/bone interface. 

Freeman
Pipino current stem design CFP™

- He has experienced improved results over the c.c. material, but still encounters some stress shielding.

- FEA modeling of the MSA/ARC stem has demonstrated better bone loading patterns compared to the Biodynamic™ design.

- The CFP stem is the current benchmark in clinical/surgical results for short curved neck-sparing stems.
Concept to improve on Prof. Pipino’s work of Tissue Sparing

- Tissue Preserving for early intervention
- Alternative to HR (broader indications)
- Choice of bearings
- Revision option after HR
- Easier surgical technique for anterior approach
- Reproducible technique for all surgical approaches
- Modular neck for fine tuning joint mechanics
- Ease of retrievability and conversion to conventional THA if necessary
Short Curved Neck Stabilized

Pipino

ARC™ & MSA™ Stems
licensed TSI™ technology patents pending

Corin
Save Hard Tissue
&
Lateral Hard and Soft Structures
The conical flair was built off conical collar of 1993 stem design.

Transfer hoop tension into compressive loads.
Novel: proximal conical flair loads the medial neck
Check Range of Motion
Three key technique related features

1. The level of neck resection

- Top of level A is too short risk leg length being long and increased in risk of mechanical impingement.
- You can go down to the top of C without risking stability.
Lessons Learned Summary

② The angle of the neck resection

50° at 5-8 mm

Note:
Slight varus, valgus does not appear to make any significant difference in early clinical results.

➢ Too vertical stem can be in varus
➢ Too horizontal stem can be in valgus
Lessons Learned Summary
➢ Rasp shape the medial curve

③ Work the medial curve

There is a learning curve (3-4 cases) and a different technique as compared to broaching.
Dual Mobility Cups

 Might be an option for small profile patients
Sub Cap FX.

Keppler
 Templating

- AP helps determine neck level of resection
- Lateral helps determine stem size

- 20° of internal rotation is more accurate for offset and medial curve measurement

You don’t template like a conventional stem. This would be too tight. The distal stem is a pilot. A size #2 will ensure proper seating of the conical flair.

(Ideally AP film should be in Internal Rotation)
Intra-operative Assessment
X-Rays are helpful

- No problem in taking more neck
- Make a intra-operative assessment and fine-tune your mechanics
- Decision to take a little more bone

70% of the time some change is made (25 yrs.)

Less need to go lateral
17 year post index surgery

C. Bryant
17 year old
Motor cycle accident

discharged next day
Lessons Learned
Complications

- One case in Au that subsided 1.5 cm (80 yr. old male) no pain stable 12 months post-op was this do to a intra-op fx or post-op?
- 3 cases we needed a smaller stem size (all female)
- Two intra-operative calcar cracks one significant converted to primary stem and one minor treated with a wire.
- One neck/head disassociation (converted to a Mallory/Head)
Neck Stabilized Design

- Short curved trapezoidal style
- Proximal conical flare
- T-Back
- Sagittal slot
- Distal lateral portion of the stem angle 11°
- Porous Coating (Plasma Ti & HA)
- C.C. modular neck (two lengths, two varus/valgus angles 8° & 12°, anteverted neck 12°)
- Neck has a taped threaded hole for retrievability
Bi-lateral
First Side May
Second August
We are encouraged at this point of clinical/surgical development.
The tradition established by Charles O. Bechtol, MD lives on!

Timothy McTighe
Executive Director, JISRF
Chagrin Falls, Ohio