

INTERNATIONAL SOCIETY FOR TECHNOLOGY IN ARTHROPLASTY ISTA Sydney, Australia October 4-6, 2012

Dedicated to the Advancement of Total Joint Arthroplasty . Since 1971

Analysis of Neck Sparing (TSI) Versus Conventional Cementless Stem

Declan Brazil, Ph.D., Sydney, AU Co-Director of Research JISRF

Timothy McTighe, Dr.H.S.(hc) Executive Director <u>www.jisrf.org</u>

Disclosures

Timothy McTighe, *Declan Brazil

- Held Shares in CDD, LLC, Omnilife Science, J&J, Zimmer
- Received Royalties from: CDD, LLC, Omnilife Science, GOT
- Done consulting work for: Omnilife Science
- Received institutional support from 1971: +30 companies.
- Equity Position: *Signature Orthopaedics

Design Rationale

- Reduce the stresses generated in "modular" short stem.
- Compare resulting short stem stresses to conventional stem when restoring same head centre.

Pipino advocated the use of short curved neck sparing stem. CFP™ Titanium stem design 1996 Freeman advocated Neck conserving since 1980's

Design Principles

Design Inputs - Modular Stem problems

Fatigue Failure of Modular Neck - Wright Medical

Corrosion / Metal Debris Issue

Significant Current Concern

Monday, October 15, 12

IISRI

Current Retrieval Analysis Collaboration with JISRF and DARF (Donaldson & Clarke)

		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	??????		
	<u>;;;;;;</u>	<u>[]]]]]]]]]</u>	
R		R7	4

Engineering the optimized solution...

- Fatigue Failure of Modular Neck
 - Switch Neck Material from titanium to Cobalt Chrome.
- Corrosion / Metal Debris Issue
 - Complex problem, many mechanisms that can contribute.
 - NPL Publication defines over 12 types of corrosion
 - Consider the most applicable to stem/neck design
 - Fatigue Corrosion
 - Fretting Corrosion
 - Stress Corrosion

Stress Reduction through anatomy

Use anatomical structure to reduce Stresses in stem.

FEA Simulation

784N Abductor &

Tensor fascia Original Femoral head centre restored for each implant.

5340N ISO 7206-8

Bone considered to made up of 2 layers:

- cortical (E=16GPa)
- cancellous (E=450MPa)

Monday, October 15, 12

JISRF

710N \

lateralis m

loa

Implant Materials:

- Neck Stabilisation implant Titanium Stem, CoCr Neck.

- Conventional Stem, Monoblock Titanium

JISRF

Simulation Results

Effect of Varus / Valgus tilt Maximum tensile stress in stem

The effect of Varus tilting Stem was much less for the neck stabilisation stem compared to the monoblock design.

- Stresses lower due to neck sparing design.
- Further Stress Reduction by Taper Design (Not all tapers are equal)
 - Cremascoli Geometry Design.

Rectangular geometry is torsionally stable and has optimal bending strength

Circular Taper has insufficient intrinsic stability for in-vivo torsional loads

Concern Short Taper ratio Shot Peening

Optimal Taper Design through Neck Stabilization

	Taper Support	Offset	% Increase head centre length
TSI (ARC)	17	27.5	
Wright Medical	15	42	55%
Stryker	13	42	53%

Taper Support

Optimal Taper Design through Neck Stabilization

JISRF

Optimal Design Conclusions

- Biomechanical advantage of neck stabilization stem produces lower stress in stem compared to monoblock equivalent (for identical head centre restoration)
- Stress variation due to prosthesis tilting on monoblock design has more effect than neck sparing neck.
- Neck Sparing design enables lower stresses due to combined shorter offset with larger taper engagement, thus reducing corrosion / debris generation.

